curricuLAB[®] PHYWE

Force and displacement on a free pulley

Physics	Mechanics	Forces, w	ork, power & energy
Difficulty level	QQ Group size	Preparation time	Execution time
medium	2	10 minutes	10 minutes
This content can also be found online at:	圓明		

http://localhost:1337/c/5f9d962ee9913500039a886a

Teacher information

Application

PHYWE

Test set-up for determining the force on a loose pulley

In this experiment, the forces acting on a rope which is laid around a deflection pulley are brought into balance.

This phenomenon is based on the fact that the forces in a rope are equal at both ends when the rope is tensioned over a frictionless pulley. Since the forces caused by friction are negligible in the context of this experiment, the pulley can be considered almost frictionless here.

Other teacher information (1/2)					
Prior	Students should have a basic understanding of forces and be able to determine the weight of a body using a spring force meter. Ideally, students should already have a basic understanding of forces and ways of moving on a fixed roller.				
Scientific	The frictional force acting between the rope and pulley ${\cal F}_F$ is neglected in the context of this experiment.				
	Consequently, the forces acting in the sum of the forces in the vertical direction ${\cal F}_y$ is zero.				
	$\Sigma F_y \;=\; 0$				

Other teacher information (2/2)

www.phywe.de

3/14

PHYWE

Safety instructions

PHYWE

The general instructions for safe experimentation in science lessons apply to this experiment.

PHYWE

Student Information

Motivation

PHYWE

PHYWE

Crane with pulley block

Deflection pulleys are often used wherever heavy loads have to be lifted. The reason for this is that the ropes to which the load is attached can often only carry a certain, smaller load in order to be flexible enough to be wound onto a winch.

By deflecting at several fixed and loose pulleys (e.g. on a crane with pulley block) the load is distributed over several sections of the rope. As a result, lifting usually takes longer, since the rope can be pulled with less force, but the rope's travel distances become longer.

You will learn in this experiment the forces at work and the ways of the loose pulley.

Tasks

On a loose pulley you will determine the forces that occur on the two suspensions when you load the pulley with different masses.

• You will also change the point of application of the force and examine the effect on the load. This way you will find out the relationships that apply to the loose pulley.

Equipment

Position	Material	Item No.	Quantity
1	Support base, variable	02001-00	1
2	Support rod, stainless steel, I = 600 mm, d = 10 mm	02037-00	3
3	Support rod with hole, stainless steel, 10 cm	02036-01	2
4	Boss head	02043-00	2
5	Weight holder, 10 g	02204-00	1
6	Slotted weight, black, 10 g	02205-01	4
7	Slotted weight, black, 50 g	02206-01	1
8	Pulley,movable,dia.65mm,w.hook	02262-00	1
9	Spring balance,transparent, 1 N	03065-02	1
10	Spring balance,transparent, 2 N	03065-03	1
11	Spring balance holder	03065-20	2
12	Measuring tape, I = 2 m	09936-00	1
13	Fishing line, I. 20m	02089-00	1

Additional equipment

1

PHYWE

Position Equipment Quantity

1 Scissors

Set-up (1/3)

PHYWE

First, screw the divided support rods together to form long support rods.

Connect the two halves of the tripod foot with a long tripod rod and attach the locking levers.

Set-up (2/3)

PHYWE

Insert the two remaining long tripod rods into one half of the tripod foot and fix them.

Insert the two dynamometer holders into the 100 mm tripod rods with hole.

Set-up (3/3)

PHYWE

Attaching and adjusting the force gauge

Attach the double sleeves to the two vertical, long support rods at the upper end and clamp the short rods into the double sleeves with the force gauge holders.

Now clamp the two force gauges and adjust them to zero with the screws.

Prepare a piece of fishing line of about 35 cm length and knot one loop at each end.

Procedure (1/3)

PHYWE

Determination of F_W of the pullev

- $\circ~$ Determine the weight force F_W of the pulley with the dynamometer 1 N and note the value.
- Connect the two dynaometers with the fishing line and hang the loose pulley into the line.

Procedure (2/3)

PHYWE

Determination of F_1 and F_2

- $\circ\,$ Attach the weight plate to the hook on the pulley.
- \circ Load the pulley successively with weights so that the total mass is equal to the masses given in Table 1 m and measure the forces F_1 and F_2 .
 - $\circ \ m_{total} = 20g, \, 40g, \, 60g, \, 80g, \, 100g$
- Note your measurement results in the table.

PHYWE

Procedure (3/3)

PHYWE

Variation of the force gauge position and load path

- Now clamp the force gauge 1 N so that the load is only just above the table top, load the roller with a total mass m = 100 g and read the readout of both force gauges F_1 and F_2 again.
- Measure the height h_f of the dynamometer 1 N above the table surface (the height h_l of the load above the table surface is 0).
- Pull the dynamometer 1 N higher step by step, so that the load is lifted by about 2 cm at a time.
- For each position of the load, read its height h_l above the table surface and the height h_f of the dynamometer 1 N. At each step, observe the measured values for F_1 and F_2 . Enter all measured values in Table 2 in the protocol.

Report

Robert-Bosch-Breite 10 37079 Göttingen Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Table 1

PHYWE

Enter	your measure	d values in tl	ne table.		
					$F_{W,Pulley} = N$
$m\left[g ight]$	$F_1 [N]$	$F_2 [N]$	$F_W[N]$	$F_1+F_2\ [N]$	Calculate F_W according to the
20					formula
40					$F_W = m \cdot g + F_{W,Pulley}$
60					with: $g=9,81rac{m}{s^2}$
80					Additionally calculate the sum of F_1 and F_2 .
100					Enter the calculated values into the
		A		•	table.

Table 2

Note your measure calculate the load p to the starting posit and complete the ta	ed values in the table and baths from the height difference tion for load and force s_l and s_f able.	$h_l \ [cm] \ 0$	$h_f [cm]$	$s_l \ [cm]$	$s_f [cm]$
Enter the values here again of both force gauges and the value for F_{W} for $m_{WM} = 100 a$		2			
······································		4			
$F_1 = N$		6			
$F_2 = N$		8			
$F_G = N$		10			

11/14

info@phywe.de

www.phywe.de

PHYWE

Table 3

PHYWE

Task 1

PHYWE

Compare this sum $F_1 + F_2$ to the weight force F_W which has mass and role. Which statement is true?

Task 3

PHYWE

	What is the relationship between load path s_l and force path s_f ?
	$igodot S_f = s_l$
T	$O \hspace{0.1in} s_{f} = 2 \cdot s_{l}$
i	$igodot S_l = 2 \cdot s_f$
Experiment set-up	

www.phywe.de

Task 4		PHYWE
Experiment set-up	What is the relationship between the forces F_f and F_W ? $\bigcirc F_f = F_W$ $\bigcirc F_f = 2 \cdot F_W$ $\bigcirc F_W = 2 \cdot F_f$ \bigcirc Check	

Slide	Score / Total
Slide 21: Comparison of the forces	0/1
Slide 22: Comparison of the products	0/1
Slide 23: relation between \(s_l\) and \(s_f\)	0/1
Slide 24: relation between \(F_f\) and \(F_G\)	0/1
Total amount	0/4
 Solutions Repeat Exporting text 	