

The law of reflection

Physics

Light & Optics

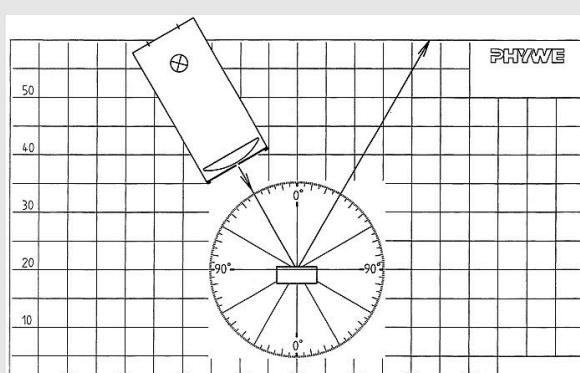
Reflection & refraction of light

 Difficulty level
easy

 Group size
-

 Preparation time
10 minutes

 Execution time
10 minutes


This content can also be found online at:

<http://localhost:1337/c/6428229c5e30a7000275ea06>

PHYWE

Teacher information

Application

PHYWE

Experimental set-up:

Adhesive luminaire with optical disc and plane mirror

Light propagates in a straight line. If a light beam hits a reflecting object, the light beam also spreads out in a straight line from there.

The angle of incidence of a light beam to a reflecting object (mirror) always corresponds to the angle of reflection of the light beam.

Other teacher information (1/2)

PHYWE

Prior knowledge

The students need theoretical knowledge about the straight-line, ray-shaped propagation of light and that objects reflect light rays.

Principle

The law of reflection is to be worked out and the reversibility of the light path during reflection is to be demonstrated.

Other teacher information (2/2)

PHYWE

Learning objective

The students should gain knowledge about the principles of light reflection. The focus should be on the knowledge of angle of incidence = angle of reflection.

Tasks

The students should understand that straight rays of light are always reflected exactly as they hit the object.

Additional teacher information

PHYWE

Note

If necessary, the plane of the reflected light can also be demonstrated with simple paper. However, it is recommended to use white paper (e.g. 06306-00).

Safety instructions

PHYWE

- The general instructions for safe experimentation in science lessons apply to this experiment.

Student information

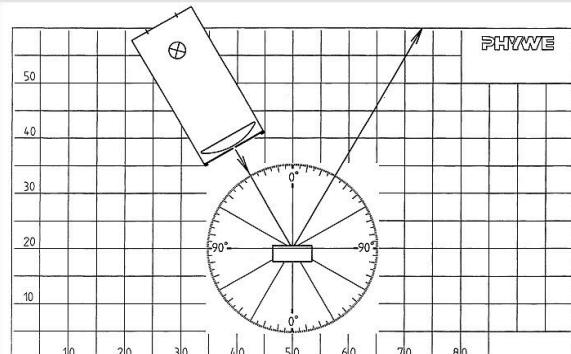
Motivation

3D animation:

Billiard table

A pool table in physics class?!

The underlying experiment deals with the reflective properties of light.

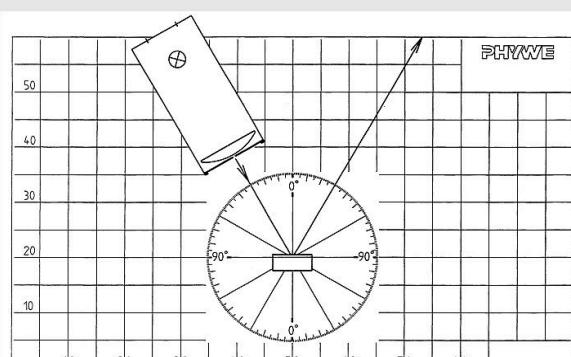

If you look at a simple game of billiards, you quickly find similarities with the reflection behaviour of light.

Just like the light on a mirror, the balls bounce off the boards, depending on the direction they come from, they take a new direction after impact.

Equipment

Position	Material	Item No.	Quantity
1	PHYWE Demo Physics board with stand	02150-00	1
2	Halogen lamp for experiments, 12V/50W, with magnetic base	08270-20	1
3	Optical disk, magnet held	08270-09	1
4	Plane mirror, magnet held	08270-13	1
5	PHYWE Multitap transformer DC: 2/4/6/8/10/12 V, 5 A / AC: 2/4/6/8/10/12/14 V, 5 A	13533-93	1
6	G-clamp	02014-00	2

Set-up and Procedure (1/2)



Adhesive luminaire with parallel light beam and various reflectors

- Place optical disc in the centre of the lower half of the panel
- Position the luminaire with 1-slit aperture so that the light beam falls obliquely from above along one diameter.
- Place the plane mirror so that the reflecting surface contains the horizontal diameter of the full circle.

(The plane mirror is not surface-mirrored. Therefore, the underside of the mirror glass plate must be in the same plane as the horizontal diameter).

Set-up and Procedure (2/2)

Adhesive luminaire with parallel light beam and various reflectors

- Vary the angles of incidence and read off and tabulate the respective angles of incidence and reflection.
- Hold a light sheet of paper, thick as cardboard, at the edge of the board in the plane of the board so that the reflected beam falls in a grazing manner; then tilt the sheet backwards and forwards out of the plane of the board.
- Place the luminaire in such a way that the light beam runs against the direction that one of the reflected light beams had during the measurements.

PHYWE

Report

Task 1

PHYWE

Enter your observations for the angle of reflection in the table opposite!

 α α'

0°	
20°	
40°	
60°	
80°	

Task 2

PHYWE

The law of reflection applies to the reflection of light: If, in particular, a ray of light strikes vertically, it is reflected into itself. The light path during reflection is reversible.

Angle of incidence and angle of reflection are equal, $\alpha=\alpha'$.

 True False**Check**

Incident beam, reflected beam and incident slot are in different planes.

 True False**Check**

Slide

Score / Total

Slide 14: Multiple tasks

0/2

Total

 0/2 Solutions Repeat Export text**9/9**