The astronomical telescope

The astronomical telescope (after Kepler)

Physics	Light & Optics	Optical de	vices & lenses
Difficulty level easy	RR Group size	C Preparation time 10 minutes	Execution time
This content can also be found online at:			

http://localhost:1337/c/64725498e1994e000281c7c1

Teacher information

Application

PHYWE

2-slit diaphragm two converging lenses

This experiment is about the function of a classical astronomical telescope in Keppler design.

The converging lenses are positioned in such a way that the angle of vision is significantly enlarged.

The focal points of the two converging lenses coincide, allowing a distant point to be magnified.

The entire system creates a virtual inverted image.

www.phywe.de

Other teacher information (2/2)

PHYWE

Safety instructions

PHYWE

• The general instructions for safe experimentation in science lessons apply to this experiment.

PHYWE

Student information

Motivation

PHYWE

Antique astronomical telescope

Astronomical telescopes have been used for many centuries to explore and understand the universe.

The classic telescope is based on a simple construction in which various lenses are used.

The underlying experiment is intended to explain the construction of such a telescope.

Equipment

Position	Material	Item No.	Quantity
1	PHYWE Demo Physics board with stand	02150-00	1
2	Halogen lamp for experiments, 12V/50W, with magnetic base	08270-20	1
3	Optical block, semicircular, magnet held	08270-01	1
4	Opt. block,planoconvex, magn.held	08270-02	2
5	PHYWE Multitap transformer DC: 2/4/6/8/10/12 V, 5 A / AC: 2/4/6/8/10/12/14 V, 5 A	13533-93	1
6	G-clamp	02014-01	2

2-slit diaphragm with two converging lenses

- Set optical axis on adhesive panel
- Place the plano-convex and semi-circular bodies on the optical axis as shown in the illustration.
- Position the lamp with the 2-slit diaphragm so that the two rays form a small angle α with the optical axis and emerge parallel from the second lens (semicircle); readjust the second lens if necessary.

Set-up and Procedure (1/2)

2-slit diaphragm with two converging lenses

- PHYWE
- Set optical axis on adhesive panel
- Place the plano-convex and semi-circular bodies on the optical axis as shown in the illustration.
- Position the lamp with the 2-slit diaphragm so that the two rays form a small angle α with the optical axis and emerge parallel from the second lens (semicircle); readjust the second lens if necessary.

PHYWE

PHYWE

2-slit diaphragm with two converging lenses

- Observe the course of the rays
- $\circ~$ Mark angles $\alpha~ {\rm and}~ \beta$
- Compare angle α with the angle β which the two rays beyond the second lens again form parallel with the optical axis.

PHYWE

PHYWE

Report

Robert-Bosch-Breite 10 37079 Göttingen Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Task 1					PHY	NE
Put the correct w	ords into the ga	aps!				
A distant object poi	nt is imaged by th	ne first	in such a w	ay that the	virtual	
	is equal to the f	ocal length of the ler	ns. By means of a s	econd	focal length	
converging lens wit	h a smaller	and t	the	at the	collecting lens	
same position, a	• • •	enlarged image is	produced from the		real	
	Intermediate in	nage.			focal point	
					image width	
Check						

Task 2	PHYWE
The experimental set-up significantly reduces the angle of vision $(\alpha > \beta)$ • True • False	The light rays of very distant objects can be considered (almost) parallel. ○ True ○ False

Task 3	PHYWE
	The astronomical or Keplerian telescope consists on the object side of a lens (or lens system) with a large focal length,
	called a tripod.
	called a lens.
	called a magnifying glass.