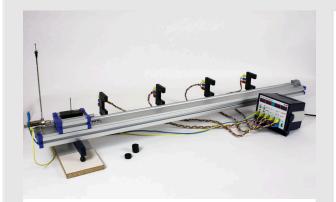


Равноускоренное движение по наклонной плоскости на демонстрационной дорожке со счетчиком 4-4

Физика	Механика	Механика Динамика	
р Уровень сложности	QQ Кол-во учеников	<u></u> Время подготовки	Время выполнения
средний	2	10 Минут	10 Минут

This content can also be found online at:

 $\underline{http://localhost:1337/c/5f661256b24cbe000315a030}$



PHYWE

Общая информация

Описание

Экспериментальная установка

Тело, движущееся по наклонной плоскости испытывает постоянное ускорение, параллельное плоскости, благодаря действующей на него составляющей силы тяжести.

В этом эксперименте законы движения для равноускоренного движения должны быть подтверждены экспериментально измерением времени перемещения тележки по наклонной демонстрационной дорожке.

Кроме того, с помощью второго закона Ньютона можно определить величину ускорения свободного падения.

Дополнительная информация (1/2)

PHYWE

предварител знания

Принцип

Учащиеся должны быть знакомы с основными характеристиками механического движения и понятиями классических уравнений движения.

Если тело движется по наклонной плоскости, то оно испытывает постоянное ускорение из-за гравитационного поля Земли, которое действует параллельно указанной плоскости.

Дополнительная информация (2/2)

PHYWE

Цель

Если тело движется равноускоренно, то пройденное расстояние увеличивается пропорционально квадрату времени в соответствии с законом равноускоренного движения для расстояния от времени.

Задачи

- 1. Определите зависимости расстояния от времени по нескольким значениям времени измерения после преодоления разных расстояний
- 2. Определите зависимости скорости от времени по измерению времени затенения световых барьеров в различных положениях.
- 3. Определите величину ускорения свободного падения по известным значениям массы тележки и углу наклона демонстрационной дорожки.

Инструкции по технике безопасности

PHYWE

К этому эксперименту применяются общие инструкции по безопасному проведению экспериментов при преподавании естественных наук.

Теория

Скорость тележки является линейной в соответствии с законом равноускоренного движения для скорости от времени:

$$s(t) = \frac{1}{2} \cdot a \cdot t^2, v(t) = a \cdot t$$

В зависимости от угла наклона траектории сила тяжести, действующая на тележку, приводит к равноускоренному движению, пропорциональному ускорению свободного падения:

$$a = g \cdot sin(\alpha)$$

Материал

Позиция	Материал	Пункт No.	Количество
1	Демонстрационная дорожка трек, алюминиевая, длина 1,5 м	11305-00	1
2	Тележка с малым коэффициентом трением, с сапфирными подвесками	11306-00	1
3	Запирающая пластина для тележки, ширина 100 мм	11308-00	1
4	Игла со штекером	11202-06	1
5	Трубка со штекером	11202-05	1
6	Пластилин, 10 брусков	03935-03	1
7	Гиря для тележки, 400 г	11306-10	1
8	Гиря, 50 г, черная	02206-01	2
9	Гиря, 10 г, черная	02205-01	4
10	Запирающий держатель насадка для демонстрационной дорожки	11305-12	1
11	Световой барьер, компактный	11207-20	4
12	Держатель для светового барьера	11307-00	4
13	Пусковая система для демонстрационной дорожки	11309-00	1
14	Магнит со штекером	11202-14	1
15	Таймер 4-4	13604-99	1
16	Соединительный проводник, 1000 мм, красный	07363-01	4
17	Соединительный проводник, 1000 мм, желтый	07363-02	5
18	Соединительный проводник, 1000 мм, синий	07363-04	5
19	Подкладные колодки, 150 мм, 4 шт.	02070-00	1
20	Рулетка, I=2 м	09936-00	1
21	Портативные весы, OHAUS CR2200	48914-00	1

PHYWE

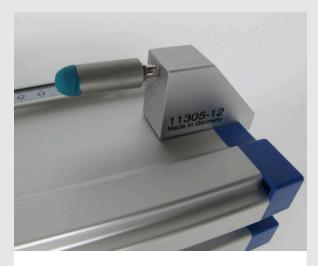


Подготовка и выполнение работы

Подготовка (1/6)

Пусковое устройство должно быть приподнято с одного конца

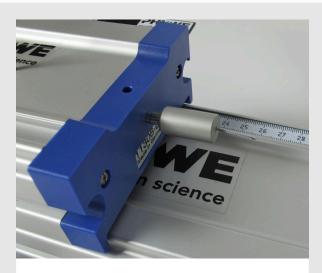
1. Демонстрационную дорожку с помощью регулировочных винтов на ножках для устранения незначительных эффектов трения тележки следует установить под углом, чтобы измерительная тележка не начинала просто катиться вправо.


Затем поместите какой-нибудь предмет (блоки, книги, стопки бумаги и т.д.) под двуногую подставку направляющей дорожки, чтобы поднять её примерно на 1-5 см.

Подготовка (2/6)

PHYWE

Трубка с пластилином прикрепляется к запирающему держателю-насадке


2. Пусковое устройство должно быть установлено на левом конце дорожки.

Пожалуйста, обратите внимание, что для запуска тележки с начальным импульсом пусковое устройство должно быть смонтировано таким образом, чтобы пусковой механизм отходил от измерительной тележки при его срабатывании.

3. Трубка, заполненная пластилином, прикрепляется к запирающему держателю-насадке на правом конце демонстрационной дорожки, чтобы замедлить движение тележки без сильного удара.

Подготовка (3/6)

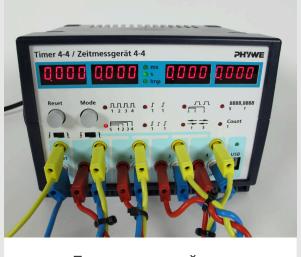
PHYWE

Передняя часть измерительной тележки

- **4.** Измерительная тележка снабжена удерживающим магнитом с заглушкой, иглой с заглушкой и запирающей пластиной для измерительной тележки (b = 100 мм).
- **5.** Массу тележки можно варьировать с помощью грузиков.

Подготовка (4/6)

PHYWE

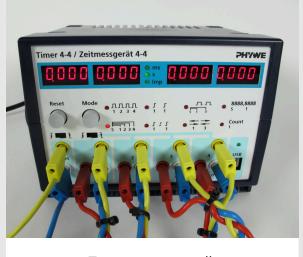


Установка световых барьеров

- 6. Четыре вилочных световых барьера устанавливаются с помощью специальных держателей для световых барьеров на проезжей части демонстрационной дорожки и равномерно распределяются по измерительному участку.
- 7. Масса автомобиля может быть изменена с помощью грузиков, окрашенных в черный цвет.

Подготовка (5/6)

Подключение к таймеру


8. Подключите четыре вилочных барьера последовательно слева направо к гнездам в полях "1" - "4" таймера, как показано на рисунке.

Желтые гнезда световых барьеров подключаются к желтым гнездам измерительного прибора, красные гнезда - к красным, а синие гнезда световых барьеров - к белым гнездам таймера.

Подготовка (6/6)

PHYWE

Проверьте настройки

- **9.** Пусковое устройство подключается к двум разъемам "Пуск" таймера. Убедитесь, что полярность правильная. Красный разъем пускового устройства подключается к желтому разъему синхронизирующего устройства.
- **10.** Два ползунковых переключателя на таймере устанавливаются в правое положение «задний (спадающий) фронт» (▼) для выбора фронта триггера.

Выполнение работы (1/4)

PHYWE

1. Измерьте расстояния $s_1 \dots s_4$ между световыми барьерами и начальным положением тележки.

Обратите внимание, что световые барьеры прерываются только передним краем запирающей пластины, установленной на тележке.

Для точного определения расстояний можно действовать следующим образом:

- \circ Переведите тележку в начальное положение соответствующее значению (x_0) на рулетке на правом конце тележки.
- \circ Переведите тележку в положение, когда правый конец запирающей пластины просто прерывает световой луч вилочного светового барьера i и считайте значение (x_i) на измерительной рулетке на правом конце тележки.
- $\circ \ s_i = x_i x_0 \$ это расстояние, которое тележка преодолела от старта до соответствующего светового барьера.

Выполнение работы (2/4)

PHYWE

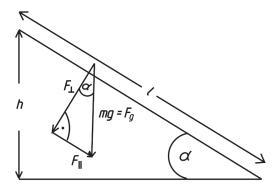
Прерывание сигнала светового барьера

- 2. Измерительная тележка получает импульс силы от пускового устройства (стартера) и испытывает постоянное ускорение, благодаря действующей на нее гравитационной составляющей.
- 3. Определите сначала промежутки времени $t_1 \dots t_4$ для заданных расстояний $s_1 \dots s_4$ между началом движения и соответствующим световым барьером, в режиме 2 (). Затем $\frac{8}{5}$ $\frac{12.3}{12.3}$ ме 1 () выполі 1 2 3 4 ерение для определения соответствующих скоростей. При выполнении этого измерения, определяется время затенения $\Delta t_1 \dots \Delta t_4$ четырех вилочных световых барьеров и вычисляется средняя скорость во время соответствующего прохода по длине запирающей пластины (100 мм).

Выполнение работы (3/4)

PHYWE

- **4.** Время измерения определяется как среднее значение 5 измерений. Перед каждым выполнением необходимо нажать кнопку "Сброс".
- **5.** Для получения большего количества точек измерения необходимо изменить положение световых барьеров и выполнить еще одну серию измерений, как описано выше.
- 6. Масса тележки должна определяться с помощью весов.



Выполнение работы (4/4)

PHYWE

7. Для определения угла наклона дорожки α измерьте расстояние между стойками дорожки l и высоту h тела, помещенного под дорожку, как показано на рисунке.

Оценка (1/7)

PHYWE

Наблюдение

Если расстояния между световыми барьерами примерно одинаковы, можно заметить, что изза ускорения тележки различия между временем прохождения t_i и временем затенения Δt_i становится все меньше и меньше по мере увеличения пройденного расстояния.

Оценка (2/7)

Данные измерений

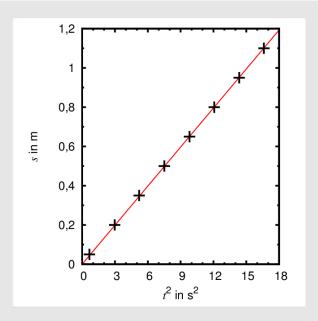
S , M	<i>t_m</i> , c	$\Delta t_{_m}$, c	<i>V</i> , м/с	$a = v/t_m$. M/c ²	$(t_m)^2$, c^2	$a=2s/(t_m)^2$, M/c ²
0,2	1,724	0,394	0,254	0,147	2,97	0,135
0,5	2,74	0,263	0,38	0,139	7,51	0,133
0,8	3,474	0,214	0,468	0,135	12,07	0,133
1,1	4,075	0,184	0,542	0,133	16,61	0,132
0,05	0,817	0,661	0,151	0,185	0,67	0,15
0,35	2,282	0,308	0,325	0,142	5,21	0,134
0,65	3,132	0,234	0,427	0,136	9,81	0,132
0,95	3,788	0,196	0,509	0,134	14,35	0,132

Оценка (2/7)

PHYWE

Данные измерений

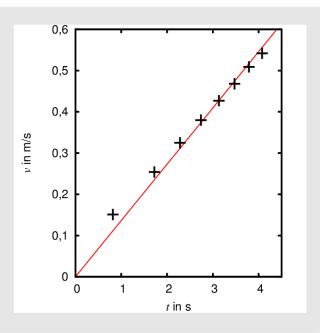
S , M	<i>t_m</i> , c	∆t _m , c	ν, м/c	$a = v/t_m$. M/c ²	$(t_m)^2$, c^2	$a=2s/(t_m)^2$, m/c^2
0,2	1,724	0,394	0,254	0,147	2,97	0,135
0,5	2,74	0,263	0,38	0,139	7,51	0,133
0,8	3,474	0,214	0,468	0,135	12,07	0,133
1,1	4,075	0,184	0,542	0,133	16,61	0,132
0,05	0,817	0,661	0,151	0,185	0,67	0,15
0,35	2,282	0,308	0,325	0,142	5,21	0,134
0,65	3,132	0,234	0,427	0,136	9,81	0,132
0,95	3,788	0,196	0,509	0,134	14,35	0,132



Оценка (3/7)

- а) Закон равноускоренного движения для расстояния от времени и скорости от времени.
- 1. Средние значения $t_{1m}\dots t_{8m}$ и $\Delta t_{1m}\dots \Delta t_{8m}$ должны быть определены по пяти измерениям $t_1\dots t_8$ и $\Delta t_1\dots \Delta t_8$.
- 2. Время затенения используется для расчета скорости $v_i(t_{im}) = b/\Delta t_{im}$, где b = 0,1 м длина запирающей пластины тележки
- 3. Ускорение тела a можно определить двумя разными способами. Либо по закону равноускоренного движения для расстояния: $s(t)=0, 5\cdot a\cdot t^2$ для измеренных значений времени движения и соответствующего положения световых барьеров либо по закону закону равноускоренного движения для скорости движения. $v(t)=a(t)\cdot t$ для измеренных значений времени движения и соответствующей скорости.

Оценка (4/7) PHYWE


 \circ Чтобы проверить закон для равноускоренного движения для расстояния от времени, измеренные значения наносятся в систему координат (s,t^2) . Ускорение a можно определить графически по наклону прямой линии через нулевую точку $(0,5\cdot a)$ или с помощью формул.

Оценка (5/7) PHYWE

 В системе координат (v, t) полученные значения скорости должны быть нанесены на график в зависимости от измеренного времени.
Закон равноускоренного движения для скорости от времени получается графически из наклона прямой через нулевую точку или путем вычисления.

Оценка (6/7)

б) Определение ускорения свободного падения

Силу тяжести F_g , действующую на тележку можно разложить на две части, одна из которых параллельна $F_{||}$ по направлению к дорожке, а другая составляющая F_{\perp} - перпендикулярна дорожке. По мере увеличения угла наклона α , увеличивается и вызывает равноускоренное движение в направлении траектории составляющая ускорения $F_{||}$. На слайде 18 показано векторное разложение силы на параллелограмме сил. Для этого используются следующие соотношения $F_{||} = F_g \cdot sin(\alpha)$.

Угол наклона α определяется высотой h тела, помещенного под дорожку, и расстоянием l между двумя концами дорожки, как отношение $sin(\alpha)=h/l$. В приведенном здесь примере измерения h=1,9см и l=139см , т.е. $\alpha=0,78$ °.

Оценка (7/7)

По второму закону Ньютона:

$$F_{\parallel} = m \cdot g \cdot sin(lpha) = m \cdot a$$

и в соответствие со слайдом 22 определяется ускорение тележки:

$$a = 0,133 \text{ m/c}^2$$

и ускорение свободного падения:

$$g_s=rac{a}{sin(lpha)}=$$
 9,73 m/c²

Величину ускорения свободного падения можно определить из результатов измерения скорости, согласно рисунку на слайде 23:

$$g_v$$
 = 9,95 m/c²

