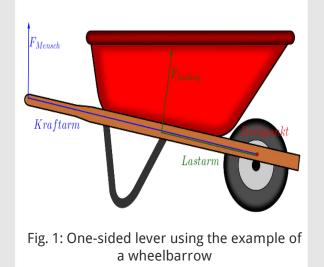


One-sided lever

P1253200

This content can also be found online at:

http://localhost:1337/c/661fa4c0665a4b0002c3f539



PHYWE

General information

Application PHYWE

Levers are force-transforming devices. They are often used to generate larger forces with small forces

With a one-sided lever, force is applied on the same side on which the action takes place.

Other information (1/2)

PHYWE

Prior knowledge

Principle

No prior knowledge required.

The aim is to prove that equilibrium prevails on a one-sided lever if the products of two opposing forces acting in opposite directions are equal to their lever arms.

Other information (2/2)

PHYWE

Learning objective

Tasks

The experiment is designed to help students understand where the equilibrium is with a one-sided lever.

The relationship between force, length of the lever arms and torque is also shown.

The students are supposed to carry out observations and measurements to determine the equilibrium of a one-sided lever.

PHYWE

Safety instructions

The general safety instructions for experimentation in science lessons apply.

Equipment

Position	Equipment	Item no.	Quantity
1	PHYWE Demo Physics board with stand	02150-00	1
2	Rod on fixing magnet	02151-02	1
3	Torsion dynamometer	03069-03	1
4	Scale for demo board	02153-00	1
5	Weight holder, 10 g	02204-01	1
6	Slotted weight, silver-bronze, 10 g	02205-03	2
7	Slotted weight, silver-bronze, 10 g	02205-03	2
8	Slotted weight, silver-bronze, 50 g	02206-03	1
9	Slotted weight, silver-bronze, 50 g	02206-03	1
10	Lever	03960-00	1
11	Pointer for demonstration lever	03963-00	1
12	Marker, black	46402-01	1
13	Screw clamp	02014-00	2

PHYWE

Setup and procedure

Setup PHYWE

- Place the rod on fixing magnet on the lower part of the demo board and place the lever in the centre on the rod.
- With the marker, draw a line vertically downwards from the axis.
- Attach the pointer for the demo lever (in the following its tip lies exactly on the line drawn when the lever is balanced).

Procedure (1/2)

PHYWE

Fig. 2: Beam balance with weight and dynamometer

- \circ Put on the dynamometer and measure the weight force in the following referred to as F_1 for the weight holder with all slotted weights; note F_1 in Table 1, upper part.
- Hook the weight holder with the slotted weights and the pull cord of the dynamometer at marker no. 10, right.
- Move the dynamometer until the lever is horizontal and the pull cord is perpendicular to it (Fig. 2)

Procedure (2/2)

- \circ Note down the reading for F_2 on the dynamometer and in Table 1.
- Shorten lever arm I_1 step by step, measure and note the force required to balance the lever in each case F_2 (see specifications in Table 1, upper part).
- \circ Remove two 50 g slotted weights from the weight holder, measure and record the weight force F_1 again.
- Hook the weight holder at mark no. 9, on the right, and leave it there in the following.
- \circ Shorten lever arm I_2 step by step. To do this, hook the pull cord of the dynamometer at marks no. 10, 9, ..., 6 (see Table 1, lower part), measure and note down F_2 for each case.

Evaluation

Evaluation (1/4)

Table 1 is completed by the specific values for I_1 and I_2 .

(The distance between the marks is 2 cm.)

After calculating the products $F \cdot I$ can be recognized:

$$\overrightarrow{F_1} \cdot \overrightarrow{I_1} = \overrightarrow{F_2} \cdot \overrightarrow{I_2}$$

Evaluation (1/4)

PHYWE

Table 1 is completed by the specific values for I_1 and I_2 .

(The distance between the marks is 2 cm.)

After calculating the products $F \cdot I$ can be recognized:

$$\overrightarrow{F_1} \cdot \overrightarrow{I_1} = \overrightarrow{F_2} \cdot \overrightarrow{I_2}$$

Evaluation (2/4)

PHYWE

Marke Nr.	l1 / cm	F1 / N	(F1*l1) / (N*cm)	Marke-Nr.	l2 / cm	F2 / N	(F2*l2) / (N*cm)
10	20	1.95	39.0	10	20	1.96	39.2
8	16	1.95	31.2	10	20	1.55	31.0.
6	12	1.95	23.4	10	20	1.19	23.8
4	8	1.95	15.6	10	20	0.79	15.8
2	4	1.98	7.8	10	20	0.39	7.8
9	18	0.98	17.6	10	20	0.88	17.6
9	18	0.98	17.6	9	18	0.99	17.8
9	18	0.98	17.6	8	16	1.10	17.6
9	18	0.98	17.6	7	14	1.27	17.8
9	18	0.98	17.6	6	12	1.47	17.6

Table 1: Example

Evaluation (3/4)

PHYWE

A one-sided lever is in equilibrium if the products of the oppositely directed forces acting on it and their lever arms are equal. The lever arms are the distances between the points of application of the forces and the centre of rotation of the lever.

The lever is rotatable in its centre so that the weight forces of the two halves of the lever balance each other out (better: their torques). The students must be made aware of this so that they do not get the wrong idea of a one-sided lever.

It is advisable to cover the free (left) side of the lever with white paper so that the image of the one-sided lever is clear from the outset.

If the term torque can be used, the law found is generalised to the torque theorem:

(see next page)

Evaluation (4/4)

PHYWE

In the case of equilibrium, the sum of the torques on the one-sided lever is zero. For two forces the following applies:

$$\mid \vec{M}\mid = \overrightarrow{F_1} \cdot \overrightarrow{I_1} \ + \overrightarrow{F_2} \cdot \overrightarrow{I_2} = 0$$

Clockwise and anti-clockwise torques have different signs:

$$\overrightarrow{F_1} \cdot \overrightarrow{I_1} = -\overrightarrow{F_2} \cdot \overrightarrow{I_2}$$
.

In the event that \vec{F} and \vec{I} form an angle of 90°,

$$\mid \vec{M}\mid$$
 = M = $\mid \vec{F} \cdot \vec{I}\mid$ = $F \cdot I$ applies, otherwise it's $M = F \cdot I \cdot \sin \alpha$.

 $I \cdot \sin \alpha$ as the effective length of the lever arm or effective lever length.

The terms load and load arm were deliberately avoided, as the load is not a physical quantity.

Task 1			PHYWE				
In the case of ed	In the case of equilibrium, the sum of the torques on the one-sided lever is zero.						
O True	O False						

