

Двигатель постоянного тока с постоянными магнитами

Физика	Электричество и м		пектрический генератор, двигатель, ансформатор	
р Уровень сложности	РО Кол-во учеников	Б Время подготовки	С Время выполнения	
средний	2	10 Минут	10 Минут	

This content can also be found online at:

http://localhost:1337/c/5f37db46f017810003037f1a

PHYWE

Информация для учителей

Описание

Электродвигатели встроены во многие электрические устройства.

Электродвигатель - один из наиболее распространенных способов преобразования электрической энергии в механическую: будь то электромобили, электрические зубные щетки, пылесосы или многое другое. Электродвигатель сегодня является неотъемлемой частью нашей жизни.

2/13

Дополнительная информация для учителей (1/2)

PHYWE

предваритель знания

Принцип

Учащиеся должны быть ознакомлены с силой, которая действует на проводник с током во внешнем магнитном поле. В идеале они должны иметь предварительные знания об электромагнитах, постоянных магнитах и взаимодействии между магнитными полями.

Ток, протекающий через катушку, которая находится в магнитном поле электродвигателя, самовыравнивается. Коммутатор меняет полярность катушки, в результате чего катушка снова продолжает вращаться и, таким образом, переходит в непрерывное вращательное движение. Для того чтобы коммутатор преодолел точку переключения полярности, обычно необходимо "запустить" двигатель.

Дополнительная информация для учителей (2/2)

PHYWE

Цель

С помощью модели электродвигателя постоянного тока с постоянными магнитами ученики должны познакомиться с устройством и принципом работы электродвигателя.

Задачи

Учащиеся подключают модель двигателя постоянного тока и наблюдают, как она работает.

Примечание. Рассматриваемый тип двигателя не может работать от переменного напряжения.

Инструкции по технике безопасности

PHYWE

К этому эксперименту применяются общие инструкции по безопасному проведению экспериментов при преподавании естественных наук.

Примечание: установка и проведение эксперимента не представляют сложности. Но следует следить за тем, чтобы на короткое время напряжение было всего 6 В и не более. Сила тока остается в диапазоне около 300 мА, хотя в качестве меры предосторожности рекомендуется диапазон измерения 3 А.

Информация для студентов

Мотивация

Электродвигатели встроены во многие устройства.

Например, электромобиль приводится в действие электродвигателем. Электродвигатели также встроены во многие бытовые приборы, такие как пылесосы или электрические зубные щетки.

В этом эксперименте ученики изучают принцип работы электродвигателя с постоянными магнитами и узнают, как электрическая энергия преобразуется в механическую.

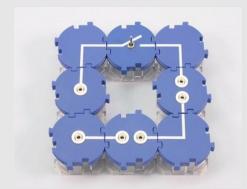
Задачи РНУМЕ

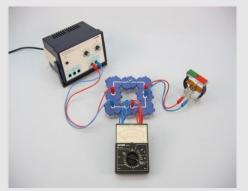
Как работает электродвигатель?

Поместите постоянный магнит на модель электродвигателя. Ознакомьтесь с устройством и принципом работы двигателя.

Материал

Позиция	Материал	Пункт No.	Количество
1	РНҮWE Источник питания пост. ток: 012 B, 2 A / перемен. ток: 6 B, 12 B, 5 A	13506-93	1
2	Аналоговый мультиметр, 600 B AC/DC, 10A AC/DC, 2 MΩ, защита от перегрузки	07021-11	1
3	Соединитель, угловой, модуль SB	05601-02	3
4	Соединительный, разомкнутый, модуль SB	05601-04	2
5	Соединительный модуль SB	05601-10	2
6	Выключатель вкл./выкл., модуль SB	05602-01	1
7	Магнит, стержневой, I=72 мм	07823-00	1
8	Модель двигателя для учебных экспериментов	07850-10	1
9	Соединительный проводник, 250 мм, красный	07360-01	2
10	Соединительный проводник, 250 мм, синий	07360-04	2
11	Соединительный проводник, 500 мм, красный	07361-01	1
12	Соединительный проводник, 500 мм, синий	07361-04	1




Подготовка

Соберите установку согласно приведенным ниже рисункам. Переключатель изначально открыт.

Установите постоянный магнит на модель двигателя.

Выберите для измерительного прибора диапазон измерения около 3 А (постоянный ток).

Выполнение работы (1/2)

PHYWE

- Включите источник питания и установите его на напряжение около 5 В.
- Установите ротор (якорь) модели двигателя в вертикальное положение и замкните переключатель.
- Разомкните переключатель. Установите ротор в горизонтальное положение и снова замкните переключатель. Следите за ротором и при необходимости слегка подтолкните его рукой.
- Изменяйте рабочее напряжение в диапазоне от 4 В до 6 В при работающем двигателе. Обратите внимание на скорость двигателя и на направление вращения ротора.
- Разомкните переключатель, переверните магнит (обратное положение полюсов) и снова замкните переключатель.
- Снова наблюдайте на направление вращения ротора и сравните его с предыдущим направлением.

Выполнение работы (2/2)

PHYWE

- Разомкните переключатель и поменяйте местами подключения двигателя.
- Замкните переключатель, наблюдайте за направлением вращения после изменения направления тока в роторе на противоположное и сравните его с предыдущим направлением.
- Установите напряжение 6 В и затормозите работающий двигатель, нажав на диск коммутатором (диск, который нажимает на контактные штифты). Наблюдайте за показаниями амперметра.
- Установите источник питания на 0 В и выключите его.

Протокол

Задача 1
Что произошло, когда двигатель был в горизонтальном положении и цепь была замкнута?
□ Двигатель запустился сам по себе.
□ Двигатель не запускается сам по себе.
□ Двигатель запустился легким нажатием.
Опроверить

Задача 2	PHYWE
Что произойдет при увеличении рабочего напряжения на двигателе	
Двигатель замедляется при повышении рабочего напряжения.	
☐ Двигатель начинает работать быстрее при более высоком рабочем напряжении.	
□ Частота вращения двигателя увеличивается с увеличением рабочего напряжения.	
□ Частота вращения двигателя уменьшается с увеличением рабочего напряжения.	
Опроверить	

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Задача З	PHYWE
Что влияет на направление вращения мотора?	
При силе тока от 1 А двигатель начинает вращаться в обратном направлении.	
Полярность рабочего напряжения	
□ Двигатель всегда вращается только в одном направлении.	
□ Полярность постоянного магнита.	
• Проверить	

Задача 4	PHYWE
Что произойдет, если затормозить двигатель?	
О Рабочий ток увеличивается.	
О Рабочее напряжение увеличивается	
О Рабочий ток уменьшается.	
О Рабочее напряжение снижается.	
• Проверить	

Заполните пробелы в тексте Двигатель работает потому, что одноименные магнитные полюса друг от друга, а разноименные полюса друг к друга. Если бы направление тока в роторе не было периодически , он смог бы совершить только максимум пол оборота. Отталкиваются притягиваются реверсивным отталкиваются притягиваются притягиваются реверсивным

Задача 6	PHYWE
Заполните пробелы в тексте. Коммутатор обеспечивает прерывание тока в обмотроисходит непосредственно перед тем, как два	тке ротора. Это прерывание
	повернутся друг к другу обеспечивает направлении вскоре
после этого, а также то, что два друг от друга.	полюса теперь
обратном отталкиваются одноименных коммутатор разноименных	притягиваются

Задача 7	PHYWE

Неподвижная часть двигателя называется статором. Почему он должен быть сделан из железа? О Железо усиливает магнитное поле. О Поскольку в электродвигателе протекают токи, статор должен быть изготовлен из железа. Железо используется только для стабильности. Проверить

Задача 8 **PHYWE**

Если двигатель тормозится, это означает нагрузку. Двигатель должен выполнять (дополнительную) механическую работу, т.е. он должен преобразовывать в механическую энергию больше электрической энергии, чем раньше. Что это значит для электрического тока *I*?

- \bigcirc Электрический ток I уменьшается при увеличении напряжения.
- $igcolone{\mathsf{O}}$ Формула для работы электрического тока $W_{el} = U \cdot I \cdot t$ не имеет значения, потому что двигатель все еще вращается под нагрузкой. Поэтому ток также остается постоянным.
- O Из формулы $W_{el} = U \cdot I \cdot t$ следует, что сила тока I должна увеличиваться, поскольку напряжение не меняется.

Проверить

Tel.: 0551 604 - 0

Слайд	Оценка/Всего
Слайд 14: Двигатель - горизонтальное положение	0/2
Слайд 15: Рабочее напряжение - частота вращения	0/2
Слайд 16: Направление вращения	0/2
Слайд 17: Нагрузка на двигатель	0/1
Слайд 18: Магнитная перестановка полярности	0/3
Слайд 19: Коммутатор	0/6
Слайд 20: Статор	0/1
Слайл 21: Нагоузка на лвигатель	0/1
Общая сумма	0/18
РешенияПовторить	

