Generating an induction voltage with electromagnets

With this experiment, students check electrical induction with electromagnets.

Physics	Electricity & Magnetism	Electromagnet	ism & Induction
Physics	Electricity & Magnetism Electric generator, motor, transformer		
Difficulty level	RR Group size	Preparation time	Execution time
easy	1	10 minutes	10 minutes
This content can also be found online at:	612-22 8		

http://localhost:1337/c/617aabc78e47ed0003a82b65

Teacher information

Application

PHYWE

Electromagnetic induction (also Faraday induction, after Michael Faraday, induction for short) refers to the creation of an electric field when the magnetic flux changes.

In many cases, the electric field can be detected directly by measuring an electric voltage. If the induction process can be triggered by means of a permanent magnet, then this should also be possible with an electromagnet.

Student Information

Robert-Bosch-Breite 10 37079 Göttingen Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Motivation

PHYWE

Electromagnetic induction (also Faraday induction, after Michael Faraday, induction for short) refers to the creation of an electric field when the magnetic flux changes.

In many cases, the electric field can be detected directly by measuring an electric voltage.

Equipment

Position	Material	Item No.	Quantity
1	Straight connector module, SB	05601-01	1
2	Angled connector module, SB	05601-02	4
3	Interrupted connector module with sockets, SB	05601-04	2
4	Junction module, SB	05601-10	2
5	Straight connector module with socket, SB	05601-11	1
6	On-off switch module, SB	05602-01	1
7	Coil, 400 turns	07829-01	2
8	Coil, 1600 turns	07830-01	1
9	Iron core, U-shaped, laminated	07832-00	1
10	Iron core, I-shaped, laminated	07833-00	1
11	Galvanometer movement	07875-00	1
12	Galvanometer scale	07876-00	1
13	Notch bearing with plug	07877-00	1
14	Connecting cord, 32 A, 250 mm, red	07360-01	2
15	Connecting cord, 32 A, 250 mm, blue	07360-04	2
16	Connecting cord, 32 A, 500 mm, red	07361-01	2
17	Connecting cord, 32 A, 500 mm, blue	07361-04	2
18	PHYWE Power supply, 230 V, DC: 012 V, 2 A / AC: 6 V, 12 V, 5 A	13506-93	1
19	Analog multimeter, 600V AC/DC, 10A AC/DC, 2 MΩ, overload protection	07021-11	1

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

PHYWE

PHYWE

• Build the model of a galvanometer according to Figs. 3, 4 and 5. Insert the model into a circuit module.

Structure and implementation

• Set up the experiment according to Fig. 1 and Fig. 2. First, the switch is open and the yoke is not in the field coil (400 turns). Use two 50 cm long leads for the connection between the galvanometer and the induction coil (1600 turns).

• Select the measuring range 3 A-. Switch on the power supply and set it to 4 V. Close the switch.

Structure and implementation

- Move the field coil and the induction coil as fast as possible towards and away from each other (along the coil axes and also perpendicular to them). Observe the deflection of the galvanometer and note your observations under "Result - Observations 1" in the protocol. Also note the current in the field coil.
- Push the yoke (I-core) into the field coil and perform the same relative movements of the coils as before. Note your observations under "Result - Observations 2" in the protocol.

curricuLAB®

Structure and implementation

PHYWE

- Place the coils close together as in Fig. 6 and open and close the switch. Note your observations under "Result -Observations 3" in the protocol.
- Push the yoke equally far into both coils and open and close the switch again. Note your observations under "Result - Observations 4" in the protocol.
- Connect the field coil and the induction coil to the U-core (see Fig. 7). Open and close the switch. Note your observations under "Result - Observations 5" in the protocol. Note the size of the pointer deflection.

- Change the voltage at the power supply unit between 0 V and 4 V with the switch closed. Note your observations under "Result - Observations 6" in the protocol.
- Set the power supply to 0 V and select the measuring range of 300 mA. Place the yoke on the U-core.
- Adjust the voltage until the ammeter reads 100 mA. Open and close the switch. Observe the pointer deflection and compare with that noted under (5). Note your observations under "Result - Observations 7" in the protocol.

Fig. 3

PHYWE

Structure and implementation

PHYWE

- Adjust the voltage until the ammeter reads 200 mA.
 Open and close the switch. Observe the pointer deflection and compare it with the previous one. Note your observations under "Result - Observations 8" in the protocol.
- $\circ~$ Set the power supply to 0 V and switch it off.

Structure and implementation

PHYWE

Observation (1/8)

Observation (2/8)

Write down your observations.

Observation (3/8)

PHYWE

Observation (4/8)

Note down your observations.

Observation (5/8)

PHYWE

Observation (6/8)

Write down your observations.

Observation (7/8)

PHYWE

Observation (8/8)

Write down your observations.

Task (1/3) PHYME In what principally different ways were induction voltages generated during the experiment? Change in magnetic flux density. Change in area cross-section. Change in inductance. Check

Task (2/3)

What was accomplished by using the yoke, the U-core, and most recently the U-core with yoke?

This resulted in a higher stability of the coil.

This resulted in an increase in inductance.

This resulted in a change of the magnetic flux.

None of the answers are correct.

Task (3/3)

PHYWE

Why is the induction voltage highest when both coils are on a closed iron core (U-core with yoke)?

Slide				Score / Total
Slide 24: Multiple tasks				0/2
Slide 25: Increase in inductance				0/1
			Total score	0/3
Show	lutions 2	Repeat	Export text	

