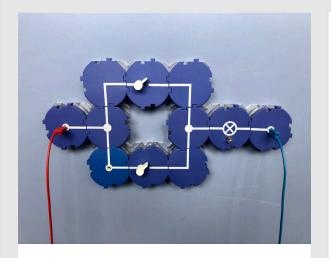

And- and Or circuit

This experiment consists of two sub-experiments. The first part of the experiment investigates the functioning of the \(AND-\) circuit and the second part investigates the functioning of the \(OR-\) circuit.

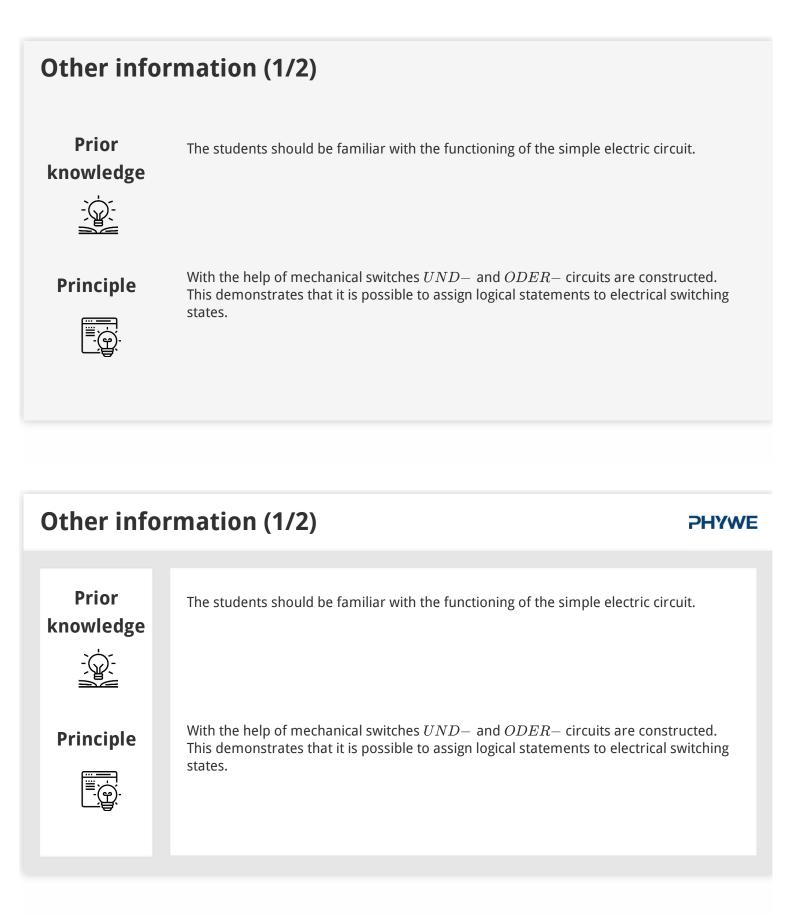
Physics	Electricity & Magnetism	Electronic	CS	
Difficulty level	QQ Group size	C Preparation time	Execution time	
easy	-	10 minutes	10 minutes	
This content can also be found online at:				

http://localhost:1337/c/6474c51521530f000293d8b6

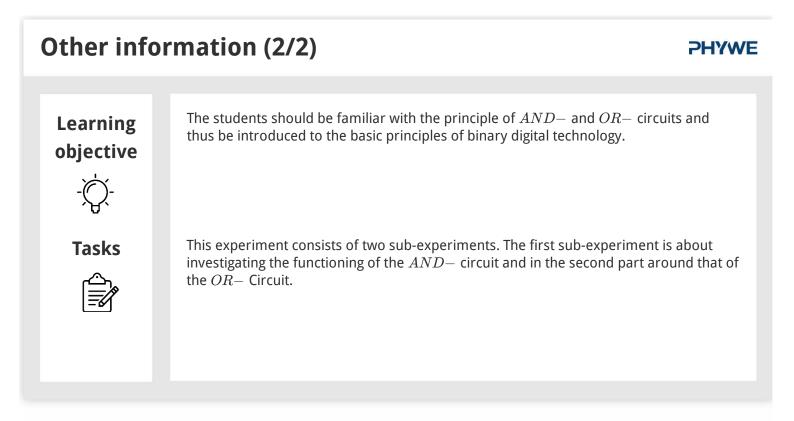


General information

Application


PHYWE

This experiment will focus on the AND- and the OR- circuit. These two circuits are basic logic circuits, so-called "gates". In addition to the NOT- and EITHER-OR- circuits form the basis for binary digital technology.


Experimental setup

3/11

Safety instructions

PHYWE

The general instructions for safe experimentation in science lessons apply to this experiment.

Theory (1/2)

PHYWE

AND- and OR- circuits form two cornerstones of basic logic circuits, which in turn form the basis for binary digital technology. They serve as the implementation for arithmetic operators of mathematical logic. These links can be realised by mechanical switches, for example. A distinction is made between two possible states:

- The condition *HIGH* (1) corresponds to the concern of an electrical voltage, or the logical truth value "true".
- $\circ~$ The condition LOW (0) corresponds to the absence of an electrical voltage, or the logical truth value "false".

Equipment

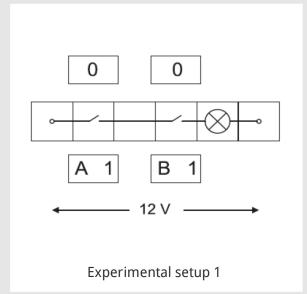
Position	Material	Item No.	Quantity
1	PHYWE Demo Physics board with stand	02150-00	1
2	Connector, straight, module DB	09401-01	4
3	Connector, angled, module DB	09401-02	4
4	Connector, T-shaped, module DB	09401-03	2
5	Junction, module DB	09401-10	2
6	Switch on/off, module DB	09402-01	2
7	Socket for incandescent lamp E10 ,module DB	09404-00	1
8	Connecting cord, 32 A, 1000 mm, red	07363-01	1
9	Connecting cord, 32 A, 1000 mm, blue	07363-04	1
10	PHYWE Power supply, universal, analog display DC: 18 V, 5 A / AC: 15 V, 5 A	13503-93	1
11	Filament lamps 12V/0.1A, E10, 10 pieces	07505-03	1
12	Pointers f. Demonst.Board, 4 pcs	02154-01	1
13	G-clamp	02014-01	2

PHYWE

Equipmo	ent
---------	-----

Position	Material	Item No.	Quantity
1	PHYWE Demo Physics board with stand	02150-00	1
2	Connector, straight, module DB	09401-01	4
3	Connector, angled, module DB	09401-02	4
4	Connector, T-shaped, module DB	09401-03	2
5	J <u>unction, module DB</u>	09401-10	2
6	<u>Switch on/off, module DB</u>	09402-01	2
7	Socket for incandescent lamp E10 ,module DB	09404-00	1
8	Connecting cord, 32 A, 1000 mm, red	07363-01	1
9	Connecting cord, 32 A, 1000 mm, blue	07363-04	1
10	<u>PHYWE Power supply, universal, analog display DC: 18 V, 5 A / AC: 15</u> <u>V, 5 A</u>	13503-93	1
11	Filament lamps 12V/0.1A. E10. 10 pieces	07505-03	1

PHYWE



Set-up and Procedure

7/11

Set-up

PHYWE

- Set up the experiment according to the illustration on the left; the switches are initially open.
- $\circ~$ Before the experiment, write on unlabelled strips from the set of electrical symbols the symbols 1,0,A and B and attach according to the illustration.
- This is important in order to explicitly formulate the statements symbolised in the truth tables line by line. (Example table 1, line 3: If switch A is closed (1) and switch B is open (0), then the light bulb is not lit (0)).

Procedure (1/2)

PHYWE

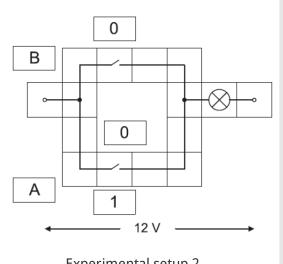
- $\circ~$ Switch on the power supply unit and set the nominal voltage 12V for the incandescent lamp.
- The switches *A* and *B* close and open, making all possible switching combinations; while doing so, observe bulb and note observations in Table 1 using the following symbols:

Switch open: 0

Switch closed: 1

Bulb not lit: 0

Bulb lights: 1


Picture of a light bulb

Procedure (2/2)

PHYWE

- Similarly, set up the experiment according to the illustration on the right with the symbols as shown in the illustration Experiment set-up 1 and switch the power supply unit back on to 12V.
- The switches *A* and *B* close and open and observe the bulb during the individual switching states.
- Record observations in Table 2 using the same symbols as in the 1st experiment.

Experimental setup 2

Evaluation (1/5)

Table 1

Switch states

Switch A

Switch B

Image: Switch B

<

9/11

Evaluation (2/5)			PHYWE
	Table 2		
Switch states		Illumination of the bulb	
Switch A	Switch B		

E	Evaluation (3/5)		
	Which statements apply to the $AND-$ closed circuit?		
	It is realised by a circuit with a power source, several on/off switches connected in series and a light bulb.		
	It is realised by a circuit with a power source, several on/off switches connected in parallel and a light bulb.		
	$\hfill \square$ It is symbolised by the sign \lor .		
	\Box It is symbolised by the sign \wedge .		
	Check		

PHYWE

Evaluation (4/5)	PHYWE
Which statements apply to the $OR-$ closed circuit?	
$\hfill It is symbolised by the sign \lor .$	
It is realised by a circuit with a power source, several on/off switches connected in series and bulb.	l a light
\Box It is symbolised by the sign \wedge .	
☐ It is realised by a circuit with a power source, several on/off switches connected in parallel ar bulb.	nd a light
Check	

Evaluation (5/5)		
Complete the paragraph:		
AND- Circuit: The bulb only lights up when all switches are closed. Designate the lamp with Y th	nen 0	
with two switches $Y = 1$ exactly when A= and B= or A B=1 .	1	
Die AND -function: $Y = A \wedge B$.		
$ODER-$ Circuit: It is indicated by the character $\hfill \hfill \hfill$		
Y = 0 if A=B= ; in all other cases Y= .		
The $OR-$ is: $Y=A \lor B$.		
	\land	
Check		

