

Potenciometro

La estructura y el principio de funcionamiento de un potenciómetro deben demostrarse utilizando un modelo de potenciómetro.

This content can also be found online at:

http://localhost:1337/c/6411d6afd341ec0002c40933

Tel.: 0551 604 - 0

Fax: 0551 604 - 107

PHYWE

Información para el profesor

Aplicación PHYWE

Ilustración de un control de volumen

Los potenciómetros son componentes de resistencia eléctrica cuyos valores de resistencia pueden modificarse mecánicamente (girándolos o moviéndolos). Tiene al menos tres conexiones (dos contactos fijos y un deslizador) y se utiliza principalmente como divisor de tensión de ajuste continuo. A través del contacto deslizante se puede derivar una resistencia variable. Los potenciómetros se utilizan a menudo para controlar dispositivos electrónicos, como el ajuste de un amplificador, por ejemplo, el ajuste de volumen de un amplificador de sonido en una radio o un televisor.

Información adicional para el profesor (1/2)

Los alumnos deben ser capaces de construir un circuito sencillo y haber aprendido los conceptos de tensión y corriente. Además, deben comprender el principio de resistencia y la fórmula R=U/I.

Principio

Se utiliza un modelo de potenciómetro para demostrar la estructura y el principio de funcionamiento de un potenciómetro.

Información adicional para el profesor (1/2)

Los alumnos deben ser capaces de construir un circuito sencillo y haber aprendido los conceptos de tensión y corriente. Además, deben comprender el principio de resistencia y la fórmula R=U/I.

Principio

Se utiliza un modelo de potenciómetro para demostrar la estructura y el principio de funcionamiento de un potenciómetro.

Información adicional para el profesor (2/2)

PHYWE

Objetivo

Los alumnos deben comprender el principio de un potenciómetro mediante un modelo y experimentar su funcionamiento de forma vívida con un potenciómetro técnico.

Tareas

Los alumnos investigan el principio de funcionamiento de un potenciómetro utilizando un modelo de potenciómetro. A continuación, varían la luminosidad de una bombilla con ayuda de un potenciómetro técnico.

Instrucciones de seguridad

PHYWE

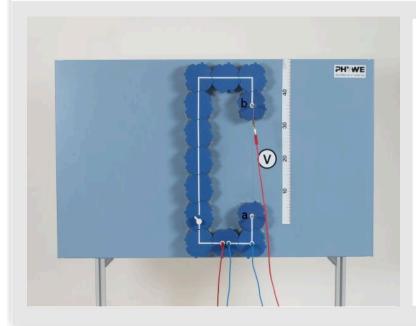
Las instrucciones generales para una experimentación segura en las clases de ciencias se aplican a este experimento.

Material

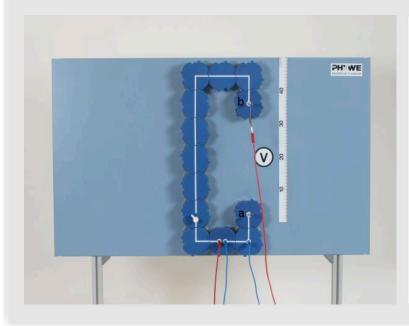
Posición	Material	Artículo No.	Cantidad
1	PHYWE Tablero DEMO-Física con soporte	02150-00	1
2	Connector, straight, module DB	09401-01	5
3	Connector, angled, module DB	09401-02	5
4	Connector T-shaped,module DB	09401-03	3
5	Connector interrupted, module DB	09401-04	2
6	Junction,module DB	09401-10	2
7	Connect.angled w.socket,module DB	09401-12	1
8	Switch on/off,module DB	09402-01	1
9	Socket f.incand.lamp E10,mod. DB	09404-00	1
10	Potentiometer 250 Ohm, module DB	09423-25	1
11	Regla para demostración	02153-00	1
12	Símbolos eléctricos para tablero de demostración, 12 unidades	02154-03	1
13	PINZA COCODRILO,S.AISLAMIEN.10PZS	07274-03	1
14	Conexión de enchufe, 2 unidades	07278-05	1
15	Cable de conexión, 32 A, 1000 mm, rojo	07363-01	2
16	Cable de conexión, 32 A, 1000mm, AZUL	07363-04	2
17	PHYWE Fuente de alimentación universal, señal analogue DC: 18 V, 5 A / AC: 15 V, 5 A	13503-93	1
18	Multímetro analógico Demo ADM3: corriente, voltaje, resistencia y temperatura	13840-00	1
19	Bombilla, 4V/0,04A, E 10,10 pzs.	06154-03	1
20	Alambre de constantan, d = 0,2 mm, l = 100 m	06100-00	1
21	Abrazadera	02014-00	2

Material PHYWE

osición	Material	Artículo No.	Cantidad
1	PHYWE Tablero DEMO-Física con soporte	02150-00	1
2	Connector,straight,module DB	09401-01	5
3	Connector,angled,module DB	09401-02	5
4	Connector T-shaped,module DB	09401-03	3
5	Connector interrupted, module DB	09401-04	2
6	<u>Junction, module DB</u>	09401-10	2
7	Connect.angled w.socket,module DB	09401-12	1
8	Switch on/off,module DB	09402-01	1
9	Socket f.incand.lamp E10,mod. DB	09404-00	1
10	Potentiometer 250 Ohm, module DB	09423-25	1
11	Regla para demostración	02153-00	1
17	Símbolos aláctricos para tablaro de demostración 12 unidades	N215 <i>∆</i> _N2	1

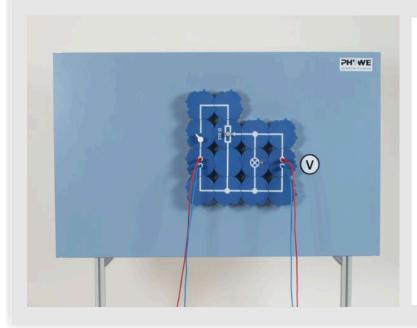


Montaje y ejecución


Montaje PHYWE

- o Montar el experimento según la ilustración.
- Apretar el cable de constantán con las dos pinzas de cocodrilo en los conectores entre las tomas a y b para que no se doble.
- \circ Seleccionar el rango de medición 1V-.
- Conectar el interruptor y sujetar el extremo libre del cable de conexión al voltímetro con una pinza de cocodrilo en b al cable.

Ejecución (1/3)


- \circ Aumentar lentamente la tensión en la fuente de alimentación hasta que el voltímetro alcance el valor de 1V pantallas.
- \circ Medir la longitud l del cable pinzado.
- \circ Observar los valores medidos de U y l.
- Utilizando la pinza de cocodrilo, conectar el voltímetro sucesivamente a diferentes puntos del cable (por ejemplo, a 3/4, 1/2, 1/4 de la longitud del cable) y medir la longitud de toma respectiva del trozo de cable y la tensión que cae a través del trozo de cable.
- o Por último, anotar los valores medidos.

Ejecución (2/3)

PHYWE

- Reconstruir el experimento según la ilustración, pero no enroscar la bombilla al principio.
- \circ Girar el mando del potenciómetro hasta el tope derecho y seleccionar el rango de medición. 10V-.

Ejecución (3/3)

PHYWE

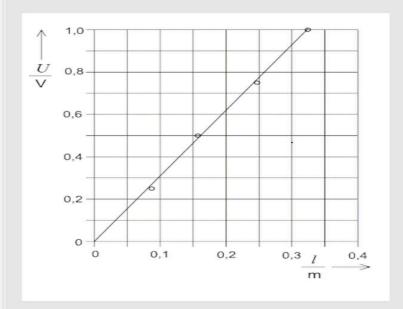
- Cerrar el circuito.
- $\circ\,$ Ajustar la tensión de la fuente de alimentación a 4V-.
- o Girar lentamente el mando del potenciómetro desde el tope derecho hasta el tope izquierdo y viceversa.
- o Observar la desviación del voltímetro y anotar los resultados.
- o Completar el circuito enroscando la bombilla.
- o Accionar el potenciómetro como antes y observar la bombilla.

Observaciones y resultados

Observaciones

Se pudo observar lo siguiente:

- 1. En primer lugar, la tensión 4V en la pantalla. Al girar el botón giratorio hasta el tope a la izquierda, la tensión desciende a 0V, al girar de nuevo hacia el tope derecho vuelve a subir 4V
- 2. Al principio la bombilla se enciende con intensidad; se va oscureciendo a medida que se gira hacia la izquierda hasta que finalmente se apaga. Cuando se vuelve a girar, se enciende cada vez más brillante y alcanza su máxima luminosidad cuando el mando giratorio vuelve a tocar el tope derecho.


l/m	U/V	(U/l)/(V/m)
0,324	1,00	3,1
0,247	0,57	3,2
0,157	0,5	3,2
0,087	0,25	2,9

Cuadro 1

Resultados (1/2)

PHYWE

De la evaluación gráfica puede concluirse que la longitud l de los trozos de alambre punteados y la tensión medida respectiva U son proporcionales entre sí. Esto se demuestra por la formación de los cocientes U/l (ver el cuadro 1)

Por lo tanto, es válido:

Uo U/l=Konstant resp.

$$U_1/l_1 = U_2/l_2 = \ldots = U_n/l_n$$

