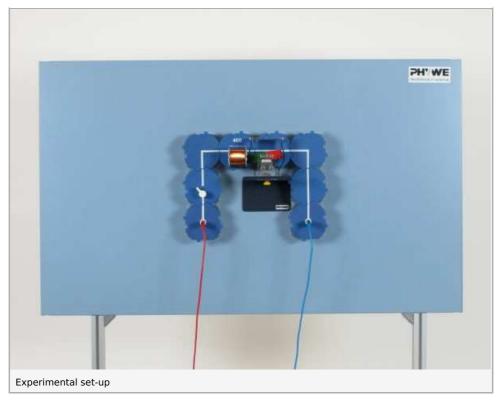


The magnetic effect of a current-carrying conductor

(Item No.: P1397700)


Curricular Relevance

Principle and equipment

Principle

It is to be demonstrated, that a conductor that is carrying current exerts a force on a permanent magnet.

Student's Sheet

Printed: 18/11/2017 20:07:16 | P1397700

Equipment

Position No.	Material	Order No.	Quantity
1	PHYWE power supply, universal DC: 018 V, 05 A / AC: 2/4/6/8/10/12/15 V, 5 A	13500-93	1
2	Demo Physics board with stand	02150-00	1
3	Motor model f. magnet board	07850-20	1
4	Coil 400 turns, module DB	09472-01	1
5	Switch on/off, module DB	09402-01	1
6	Magn.rotor f.generator model	07850-22	1
7	Junction, module DB	09401-10	2
8	Connector, straight, module DB	09401-01	2
9	Connector, angled, module DB	09401-02	2
10	Holder f.electr.motor,magn.board	07849-00	1
11	Connecting cord, 32 A, 750 mm, red	07362-01	1
12	Connecting cord, 32 A, 750 mm, blue	07362-04	1

Tel: +49 551 604 - 0 Fax: +49 551 604 - 107 Printed: 18/11/2017 20:07:16 | P1397700

Set-up and procedure

- Set up the experiment as shown in Fig. 1: Remove the pole shoes from the motor model after having unscrewed their holding screws, then insert the magnetic rotor as armature; screw the motor model tight to the holder
- Position the magnetic rotor so that its axis of rotation is at the height of the coil axis
- Switch on the power supply, set it to about 5 V direct current and limit the current to 2 A
- Repeatedly briefly close the switch, bringing the magnet to a different position before each closing of the switch; observe the magnet (1)
- With the switch open, reverse the polarity of the voltage and repeat the switch-closing procedure as above (2)

Tel: +49 551 604 - 0 Fax: +49 551 604 - 107 Printed: 18/11/2017 20:07:16 | P1397700

Observation and evaluation

Observations

- 1. As long as the circuit is closed, the coil and the same pole of the magnet attract each other.
- 2. When the current flows in the opposite direction, then the coil and the other pole of the magnet attract each other.

Evaluation

A conductor that is carrying current acts as a magnet whose poles change with the direction of the current. This behaviour can be explained by the build-up of a magnetic field around the current-carrying conductor.

Remarks

Should no power supply with automatic current limitation be available, then the voltage must be so set that the coil, which is designed for a 1 A permanent load, is not damaged; a current of up to 2 A can be briefly applied.

Robert-Bosch-Breite 10 D - 37079 Göttingen info@phywe.de