

Fuerzas entre bobinas primarias y secundarias de un transformador

P1399700 - Demostrar que las bobinas primaria y secundaria de un transformador se repelen.

Física	Electricidad y Magr	netismo Electroma	Electromagnetismo e inducción	
Nivel de dificultad	R Tamaño del grupo	E Tiempo de preparación	Tiempo de ejecución	
medio	-	10 minutos	10 minutos	

This content can also be found online at:

http://localhost:1337/c/641e1f96d017e9000263746b

PHYWE

Información para el profesor

Aplicación PHYWE

Centro de transformación

Un transformador es un componente electrónico capaz de convertir una tensión alterna. Puede utilizarse para convertir una tensión en otra más alta o más baja. Un transformador suele estar formado por dos bobinas enrolladas en un núcleo de hierro. Los transformadores se encuentran principalmente en sistemas de alimentación eléctrica, pero también en muchos dispositivos técnicos, como las fuentes de alimentación necesarias para cargar smartphones y ordenadores portátiles.

Información adicional para el profesor (1/3)

PHYWE

Conocimiento previo

Se deben tener conocimientos básicos sobre circuitos eléctricos sencillos y sobre magnetismo (fuerzas entre imanes, polos magnéticos, campos magnéticos, etc.).

Mientras circula una corriente alterna por la bobina primaria, se crea un campo magnético alterno que también abarca la bobina secundaria, la cubeta circular. Por lo tanto, se induce una corriente alterna en la cubeta circular, que a su vez genera un campo magnético alterno dirigido en dirección opuesta al campo alterno de la bobina primaria.

Información adicional para el profesor (2/3)

PHYWE

Objetivo

Los alumnos deben comprender la interacción de fuerzas entre las bobinas primaria y secundaria de un transformador.

Tareas

Demostrar que las bobinas primaria y secundaria de un transformador se repelen.

Información adicional para el profesor (3/3)

PHYWE

Este experimento es adecuado para introducir o confirmar la ley de Lenz.

Instrucciones de seguridad

PHYWE

Las instrucciones generales para una experimentación segura en las clases de ciencias se aplican a este experimento.

4/8

Material

Posición	Material	Artículo No.	Cantidad
1	PHYWE Tablero DEMO-Física con soporte	02150-00	1
2	Connector,straight,module DB	09401-01	1
3	Connector, angled, module DB	09401-02	4
4	Connector interrupted, module DB	09401-04	1
5	Switch on/off,module DB	09402-01	1
6	Bobina de 400 vueltas, módulo DB	09472-01	1
7	Yugo	07833-00	1
8	Canal circular	07835-00	1
9	Cable de conexión, 32 A, 1000 mm, rojo	07363-01	1
10	Cable de conexión, 32 A, 1000mm, AZUL	07363-04	1
11	PHYWE Fuente de alimentación universal, señal analogue DC: 18 V, 5 A / AC: 15 V, 5 A	13503-93	1
12	Símbolos eléctricos para tablero de demostración, 12 unidades	02154-03	1
13	Abrazadera	02014-00	2

Montaje y ejecución

Montaje PHYWE

- o Montar el experimento según la ilustración.
- El interruptor está inicialmente abierto.

Ejecución PHYWE

- \circ Con el interruptor abierto, conectar la fuente de alimentación y ajustar una tensión de $15V\sim$.
- Cerrar brevemente el interruptor y observar el canalón circular.
- Repetir este proceso y anotar las observaciones.

Nota: La bobina tiene una corriente nominal de funcionamiento de máx. I=1A. A la tensión de U=15V ~ le sigue un chorro de aprox. I=3A~ fluye a través. Esta intensidad de corriente es necesaria para poder demostrar claramente el efecto de fuerza; sin embargo, provocaría la destrucción de la bobina si el interruptor permaneciera cerrado durante un período de tiempo más largo.

Observaciones y resultados

Observaciones PHYWE

La bobina primaria y la secundaria, el canal circular, se repelen mientras el circuito primario esté cerrado.

Resultados

La bobina secundaria del transformador utilizado tiene el número de espiras $N_s=1\,\mathrm{y}$ se realiza aquí por el canalón circular.

Mientras circula una corriente alterna por la bobina primaria, se crea un campo magnético alterno que también abarca la bobina secundaria, la cubeta circular. Por lo tanto, se induce una corriente alterna en la cubeta circular, que a su vez genera un campo magnético alterno dirigido en dirección opuesta al campo alterno de la bobina primaria.

Esto explica la fuerza de repulsión entre las bobinas primaria y secundaria. La corriente de inducción se dirige de tal forma que actúa contra su causa (ley de Lenz).

