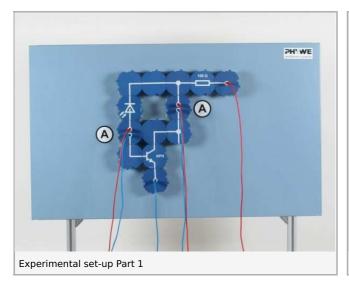
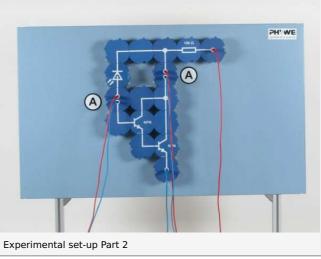


The Darlington circuit (Item No.: P1402000)


Curricular Relevance



Principle and equipment

Principle

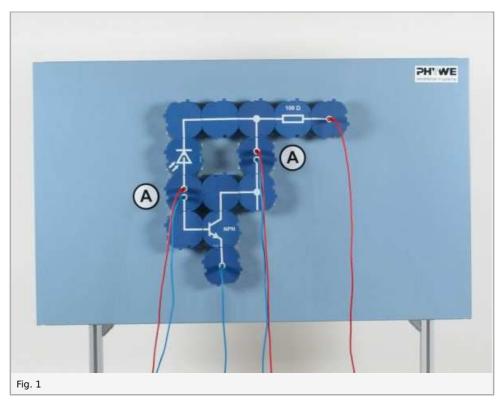
It is to be shown that current amplification can be substantially increased by the combination of two transistors in a Darlington circuit.

Student's Sheet

Printed: 30/11/2017 10:29:45 | P1402000

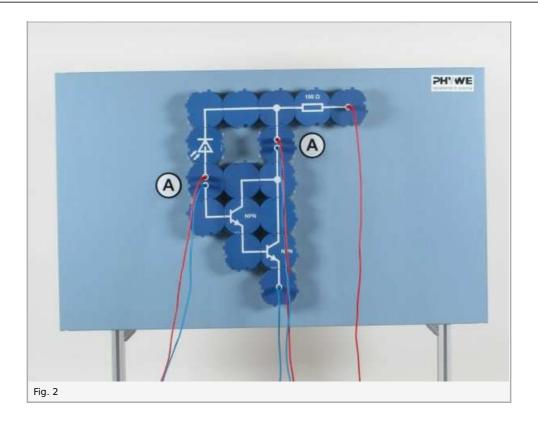
Equipment

Position No.	Material	Order No.	Quantity
1	Multimeter ADM2, demo., analogue	13820-01	2
2	PHYWE power supply, universal DC: 018 V, 05 A / AC: 2/4/6/8/10/12/15 V, 5 A	13500-93	1
3	Demo Physics board with stand	02150-00	1
4	Transistor BC337,module DB	09456-00	2
5	Clamp on holder	02164-00	1
6	Connector interrupted, module DB	09401-04	2
7	Junction, module DB	09401-10	2
8	Resistor 100 Ohm,module DB	09413-10	1
9	Photodiode,module DB	09453-00	1
10	Connector, straight, module DB	09401-01	2
11	Connector, angled, module DB	09401-02	4
12	Connector, T-shaped, module DB	09401-03	2
13	Boss head	02043-00	1
14	Universal clamp	37715-00	1
15	Support rod, stainless steel, 500 mm	02032-00	1
16	Flashlight, w/o battery,medium	08164-00	1
17	Connecting cord, 32 A, 1000 mm, red	07363-01	3
18	Connecting cord, 32 A, 1000 mm, blue	07363-04	3
19	Battery cell, 1.5 V, baby size, type C	07922-01	2


Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Set-up and procedure

1st. Experiment


- Label the transistors as T₁ and T₂
- ullet Set up the experiment as shown in Fig. 1 with transistor T_1 ; select the 1 0 IJA measurement range for the measuring instrument in the base circuit
- Select the 3 mA measurement range for the measuring instrument in the collector circuit
- Set the power supply to a voltage of 6 V-
- ullet Fix the torch to the edge of the board with the holding material and use it to so light the photodiode, that the photocurrent does not exceed the value of $I_B=5\mu A$
- Note the values measured for the base current and the collector current of the transistor
- Repeat this procedure using transistor T₂

2nd. Experiment

- Extend the experimental set-up as shown in Fig. 2 and switch over to the 100 mA measurement range for the collector current I $_{\rm cp}$
- Note the value measured for the collector current I $_{\mbox{\tiny CD}}$ of the Darlington circuit
- Illuminate the photodiode as in the 1st. experiment; note the value measured for the base current I $_{\rm BD}$ of the Darlington circuit

Observation and evaluation

Observation

 $\begin{matrix} I_{\rm CD} = 51 \text{ mA} \\ I_{\rm BD} = 0.4 \ \mu A \end{matrix}$

Table 1

Transistor	Base current	Collector current
T ₁	$I_{ m B1}{=}3~\mu A$	$I_{\mathrm{C1}} = 1.25 \mathrm{\ mA}$
T ₂	$I_{ m B2}{=}3~\mu A$	$I_{ m C2} = 0.85~ m mA$

Evaluation

The photocurrent of the photodiode is amplified by transistor T $_1$ from $I_{\rm B1}=3~\mu{\rm A}$ auf $I_{\rm C1}=1,25~{\rm mA}$. When the circuit is expanded to a Darlington circuit by a second transistor, then the current is amplified further from $I_{\rm C1}=1,25~{\rm mA}$ to $I_{\rm CD}=51~{\rm mA}$. The current has so been increased by a factor of approx. 17,000.

In a Darlington circuit, the emitter current that is amplified by the first transistor is used as base current for the second transistor, where further amplification occurs. The total current amplication of a Darlington circuit is approximately equal to the product of the current amplifications of the individual transistors:

$$B_{\mathrm{ges}} \approx B_1 \cdot B_2$$

Ta	bl	e	2
ıa	v	C	_

Transistor	Amplification	
Т1	$B_1=rac{I_{CI}}{I_{BI}}=417$	
T ₂	$B_2 = rac{I_{C2}}{I_{B2}} = 283$	
Darlington circuit	$B_{tot} \! = \! rac{I_{CD}}{I_{BD}} = 127500$	
	$B_1 \cdot B_2 = 118000$	

Remarks

The amplification values of the transistors used can differ greatly from each other. For this reason, the measured values determined may differ greatly from those given here. The 100 Ω resistor serves to limit the collector current and so to hinder thermal destruction of the transistors.

Tel: +49 551 604 - 0 Fax: +49 551 604 - 107