Diffraction at a slit

If monochromatic light hits a narrow slit, intensity minima and maxima appear behind it on a screen, from which positions the slit width can be determined at a known wavelength.

Physics	Light & Optics	Diffraction	& interference
Difficulty level	QQ Group size	C Preparation time	Execution time
medium	-	10 minutes	20 minutes
This content can also be found online at:			

http://localhost:1337/c/647c850ed59fde0002e27e64

General information

Application

PHYWE

When monochromatic light hits a narrow slit, an interference pattern with intensity maxima and minima appears behind it on a screen.

The slit width can be determined from their positions at a known wavelength.

Other teacher information (2/2)

PHYWE

3/11

Safety instructions

Theory (1/3)

If a laser beam falls on a slit of width *b*, the beam in the slit area can be thought of as divided into two equal sub-beams, as shown on the left.

If after diffraction by the angle α the path difference $\Delta l/2$ between an edge and a central ray is an integer multiple of $\lambda/2$, then they interfere destructively. This path difference also exists between each ray of one half of the slit and a corresponding ray of the other half of the slit.

Theory (2/3)

There is always darkness in the interference pattern if the relation for Δl applies:

 $\Delta l = k * \lambda = b * \sin \alpha; k = \pm 1, \pm 2, \pm 3, \dots \quad (1)$

If r is the distance between the slit and the sufficiently distant collecting screen S and if x_k is also the distance of the kth minimum from the center, then:

$$\sin lpha_k = rac{x_k}{\sqrt{x_k^2 + r^2}} pprox rac{x_k}{r} ext{for } x_k << r \quad (2)$$

Theory (3/3)

From (1) and (2) it follows for x_k :

$$x_k = k \frac{\lambda * r}{b}$$
 (3)

Brightness maxima result for the angles

$$\sin \alpha_m = \frac{2m+1}{2} * \frac{\lambda}{b}; m = \pm 1, \pm 2, \pm 3, \dots$$
 (4)

Accordingly, the following applies to x_m

$$x_m = m \frac{\lambda * r}{b} + \frac{\lambda * r}{2b}$$
 (5)

Equipment

Position	Material	Item No.	Quantity
1	Optical profile-bench, I = 1000 mm	08370-00	1
2	Slide mount for optical bench	09822-00	3
3	Plate mount for three objects	09830-00	1
4	Diaphragm, 3 single slits	08522-00	1
5	Screen, metal, 300 x 300 mm	08062-00	1
6	Barrel base expert	02004-00	1
7	Measuring tape, I = 2 m	09936-00	1
8	Diodelaser, red, 1 mW, 635 nm	08761-99	1

PHYWE

Additional Equipment

Position Equipment		Quantity
1	Sellotape	1
2	white sheet of paper	1

2 white sheet of paper

Set-up and Procedure

Robert-Bosch-Breite 10 37079 Göttingen

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Set-up

PHYWE

The experimental setup is as shown in Fig. 1.

The tally marks of the tabs for holding the components have the following positions on the optical bench.

- \circ Rider with diode laser at 2cm
- Rider with panel holder and inserted panel with gaps at 11cm

The barrel base with umbrella is located at a distance r > 3m to the slit diaphragm.

Procedure

A sheet of typewriter paper is attached to the screen with its surface normal pointing in the direction of the optical axis using adhesive tape. The aperture with slits is moved in the plate holder so that one slit at a time is completely irradiated by the laser light.

Use a water-soluble felt-tip pen to mark the positions of the maxima and minima of several diffraction orders. The distance *r* between the slit diaphragm and the screen must be determined with the tape measure. Use a ruler to determine with an accuracy of 0,5mm the distances 2x of the various intensity maxima and minima.

www.phywe.de

8/11

Procedure

PHYWE

A sheet of typewriter paper is attached to the screen with its surface normal pointing in the direction of the optical axis using adhesive tape. The aperture with slits is moved in the plate holder so that one slit at a time is completely irradiated by the laser light.

Use a water-soluble felt-tip pen to mark the positions of the maxima and minima of several diffraction orders. The distance r between the slit diaphragm and the screen must be determined with the tape measure. Use a ruler to determine with an accuracy of 0,5mm the distances 2x of the various intensity maxima and minima.

Evaluation

Tel.: 0551 604 - 0 Fax: 0551 604 - 107 info@phywe.de

www.phywe.de

Evaluation (1/4)

$\pm k$	$2x_k/mm$
1	20,5
2	40,0
3	60,0
4	80,0
5	99,0

$\pm m$	$2x_m/mm$	
1	30,5	
2	49,5	
3	70,0	
4	89,5	
5	111.0	

If we look at the interference pattern of a slit, we see that the maxima and minima are equally spaced.

In addition, the central intensity maximum is twice as wide as the other maxima. Comparing the interference patterns of the different slits with each other, it can be seen that as the slit width decreases, the distances between the maxima and minima increase (Fig.2).

Evaluation (2/4)

For a gap of the width b = 0, 2mm The distance values given in the table were used as examples. $2x_k$ resp. $2x_m$ and the corresponding value for the slit width was calculated with (3) or (5). From the data sheet of the diode laser, the value for the wavelength was taken as $\lambda = 635nm$ taken over.

The mean value for the gap width is obtained from the individual values:

 $b=(0,203\pm0,002)mm;\Delta b/bpprox 1$ An inaccuracy of r at $\pm5mm$ can be neglected when considering errors.

Calculated results from the sample data:

$\pm k$	b/mm
1	0,199
2	0,204
3	0,204
4	0,204
5	0,206

$\pm k$	b/mm
1	0,200
2	0,206
3	0,204
4	0,205
5	0,202

(Table: r = 3205 mm, gap b = 0.2 mm)

PHYWE

www.phywe.de

What does this stand for b?Gap widthWavelengthGap centre distanceO TrueO FalseO Check	Evaluation (3/4)	PHYWE
	Gap width Wavelength	of a slit, we see that the maxima and minima are unequally spaced. O True O False

Evaluation (4/4)

PHYWE

What must be taken into account so that the formula gives the correct result?	5
The wavelength λ must not be smaller than 700nm.	
All given values must be converted into the base units.	

11/11