

The force of friction is proportional to the weight force of a body and independent of the size of the supporting surface.

Material

- 2 Slotted weight, black, 50 g 02206.01
- 2 Slotted weight, silver bronze, 50 g 02206.02 02240.02
- 1 Friction block, large
- 1 Spring balance 2.5 N 03060.02
- 1 Spring balance 5.0 N 03060.05 03949.00
- 1 Holding pin

Setup and implementation

Experiment 1

- Adjust the spring balance 5 N in vertical position to zero _
- Hang the spring balance on the hook, determine the weight force F_W of the block, calculate F_W with -100 g and with 200 g additional weight (Table 1)
- Place the friction block with the rubber surface facing down on the table
- Adjust the spring balance in horizontal position to zero _
- Hang the spring balance onto the friction block (Fig. 1) _
- Exert horizontal force and slowly increase until it begins to slide _
- Determine the kinetic force of friction F_{K} (Table 1) _
- Load the block at first with two and then with four 50 g slotted weights, use holding pins for this and determine the F_{κ} each time.

Experiment 2

- Place block at first with the wood side facing down on the table, then position on the side surfaces (Fig. 2)
- Hang the spring balance 2.5 N onto the friction block
- Determine the kinetic force of friction $F_{\rm K}$ for each (Table 2)

Observation and measurement results

The greater the body is loaded with weights, the greater the kinetic force of friction.

Table 1	
F_{W}	$F_{\rm K}$
N	N
3.8	1.5
4.8	2.1
5.8	2.5

Fig. 2

Table 2		
Supporting surface	$\frac{F_{\rm K}}{\rm N}$	
large	0.75	
small	0.70	

The kinetic force equal to both supporting surfaces.

Evaluation

or

If the force of friction is entered in a diagram based on the weight force, then this makes a straight line. The kinetic force is proportional to the weight force.

The proportionality factor can be determined from the slope of the straight line. It equates to:

$$\mu$$
 = 0.42.

and is called the friction factor or coefficient of friction.

Different combinations of materials have different friction factors.

Examples:

- Steel on steel: 0.15
- Wood to wood: 0.2 to 0.4
- Ice skate on ice: 0.01
- Rubber on the street: 0.3

- $F_{K} \sim F_{W}$

 $F_{\mathsf{K}} = \mu \cdot F_{\mathsf{W}}$

The shorter the friction factor, the lower the friction. The force of friction can be calculated from the friction factor and the weight force of a body:

 $F_{\mathsf{K}} = \mu \cdot F_{\mathsf{W}}$

The kinetic force of friction does not depend on the size of the rubbing surfaces.

Remarks

- 1. Depending on the surface of the table the values for the forces of friction can deviate from those indicated.
- 2. There is also a friction factor for static friction force. This is larger than the friction factor for kinetic friction.
- 3. The friction factor only slightly depends on the speed with which the body slides.

Room for notes

4