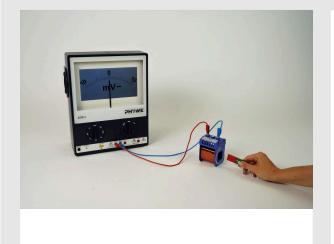


Generation of induced voltage with a permanent magnet (DEMO)

Physics	Electricity & Magne	tism Electroma	agnetism & Induction
Physics	Electricity & Magne	tism Electric gene	erator, motor, transformer
Difficulty level	QQ Group size	Preparation time	Execution time
medium	1	10 minutes	20 minutes

This content can also be found online at:

http://localhost:1337/c/617aac438e47ed0003a82b95



PHYWE

Teacher information

Application PHYWE

Test setup

Electromagnetic induction (also Faraday induction, after Michael Faraday, induction for short) refers to the creation of an electric field when the magnetic flux changes.

In many cases, the electric field can be detected directly by measuring an electric voltage.

Other teacher information (1/2)

PHYWE

Previous

No prior knowledge is required.

Principle

The change in magnetic flux acting on an electrical conductor induces an electrical voltage and thus an electrical current flow in that conductor.

Other teacher information (2/2)

PHYWE

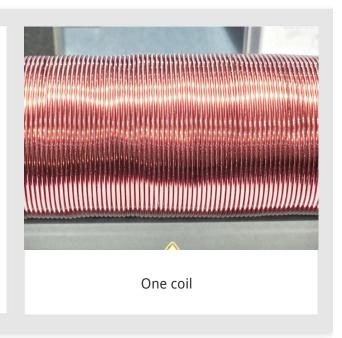
Learning

Students should understand the principle behind electromagnetic induction.

Tasks

Investigate how a permanent magnet can be used to generate induction voltages and what conditions affect their magnitude.

PHYWE



Student Information

Motivation PHYWE

Electromagnetic induction (also Faraday induction, after Michael Faraday, induction for short) refers to the creation of an electric field when the magnetic flux changes.

In many cases, the electric field can be detected directly by measuring an electric voltage.

Equipment

Position	Material	Item No.	Quantity
1	PHYWE Demo Multimeter ADM 3: current, voltage, resistance, temperature	13840-00	1
2	Coil, 300 turns	06513-01	1
3	Coil, 1200 turns	06515-01	1
4	magnet, I = 72mm, rodshaped, colored poles	07823-00	1
5	Connecting cord, 32 A, 750 mm, red	07362-01	1
6	Connecting cord, 32 A, 750 mm, blue	07362-04	1

Set-up PHYWE

- Set up the experiment according to Fig. 1.
- Select the measuring range from -10 mV to +10 mV.
- Carry out the following experimental steps one after the other and observe the deflection of the pointer of the voltmeter in each case.
- Enter your observation in the prepared table in the evaluation.

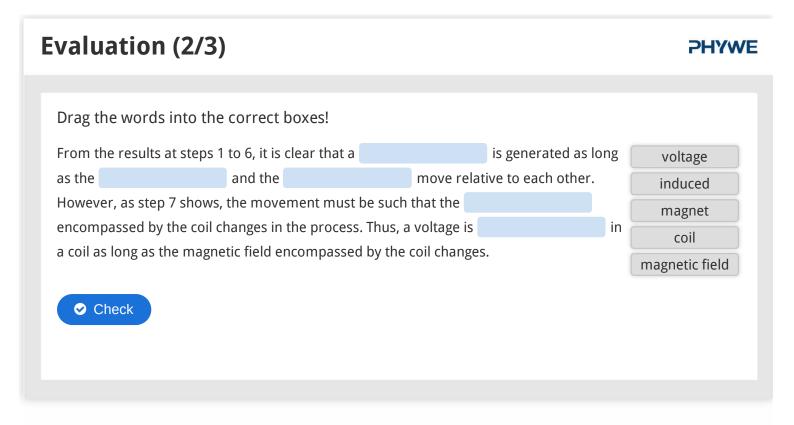
Fig. 1

Procedure PHYWE

- 1. Move the magnet with the north pole first into the coil.
- 2. Move the magnet out of the coil again.
- 3. Move the magnet with the south pole first into the coil.
- 4. Move the magnet back out of the coil.
- 5. Move the magnet in and out of the coil faster.
- 6. Let the magnet rest in the coil.
- 7. Rotate the magnet in the coil around its longitudinal axis.
- 8. Replace the coil with 400 Wdg. by a coil with 1600 Wdg. You may have to choose the measuring range 100 mV- and the appropriate direction of movement of the magnet.

PHYWE

Report


Evaluation (1/3)

PHYWE

Move	needle deflection	Move	needle deflection
North pole into coil		Faster movement of the magnet	
North pole out of coil		Magnet rests in the coil	
South pole into coil		Rotation of the magnet around the longitudinal	
South pole out of coil		As 1. to 4. for coil with 1600 Wdg.	

Evaluation (3/3) PHYWE Drag the words into the correct boxes! The of the induced voltage depends on whether the magnet is faster moving into or out of the coil, and which of the magnet is pole facing the coil. The is higher the the direction movement and the higher the number of turns of the induction coil. induction voltage Check

	of the movement o	Slide 12: Influence of the movement of the magnet			0/5
Slide 13: Induction voltage			0/4		
				Total score	0/9

