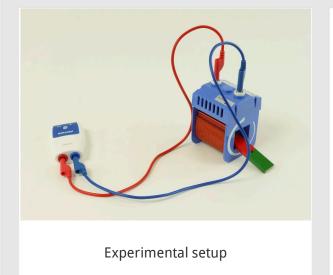


Generation of induced voltage with a permanent magnet (DEMO)

Physics	Electricity & Magnetism	Electroma	agnetism & Induction
Physics	Electricity & Magnetism	Electric gene	rator, motor, transformer
Difficulty level medium	QQ Group size	Preparation time 10 minutes	Execution time 20 minutes

This content can also be found online at:

http://localhost:1337/c/6492f42c3759e10002069160



PHYWE

Teacher information

Application PHYWE

Electromagnetic induction (also Faraday induction, after Michael Faraday, induction for short) refers to the creation of an electric field when the magnetic flux changes.

In many cases, the electric field can be detected directly by measuring an electric voltage.

Other teacher information (1/2)

PHYWE

Prior knowledge

Principle

No prior knowledge is required.

The change in magnetic flux acting on an electrical conductor induces an electrical voltage and thus an electrical current flow in that conductor.

Other teacher information (2/2)

PHYWE

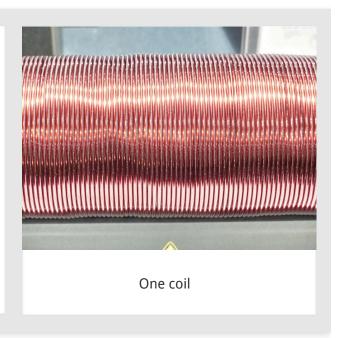
Learning objective

Tasks

Students should understand the principle behind electromagnetic induction.

Investigate how induction voltages can be generated with the help of a permanent magnet and which conditions influence their level.

PHYWE



Student information

Motivation PHYWE

Electromagnetic induction (also Faraday induction, after Michael Faraday, induction for short) refers to the creation of an electric field when the magnetic flux changes.

In many cases, the electric field can be detected directly by measuring an electric voltage.

Equipment

Position	Material	Item No.	Quantity
1	Cobra SMARTsense Voltage - Sensor for measuring electrical voltage ± 30 V (Bluetooth + USB)	12901-01	1
2	Coil, 300 turns	06513-01	1
3	Coil, 1200 turns	06515-01	1
4	magnet, I = 72mm, rodshaped, colored poles	07823-00	1
5	Connecting cord, 32 A, 750 mm, red	07362-01	1
6	Connecting cord, 32 A, 750 mm, blue	07362-04	1
7	measureAPP - the free measurement software for all devices and operating systems	14581-61	1

Set-up (1/2) PHYWE

For measurement with the **Cobra SMARTsense sensors** the **PHYWE measureAPP** is required. The app can be downloaded free of charge from the relevant app store (see below for QR codes). Before starting the app, please check that on your device (smartphone, tablet, desktop PC) **Bluetooth** is **activated**.

iOS

Android

Windows

Set-up (2/2)

- Set up the experiment according to Fig. 1.
- Carry out the following experimental steps one after the other and observe the recorded voltage signal in each case.
- Enter your observation in the prepared table in the report.

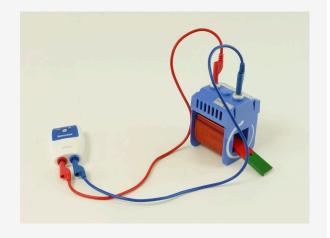


Fig. 1

Procedure (1/2)

PHYWE

- Switch on the SMARTsense sensor and make sure that the end device can connect to Bluetooth devices.
- Open the PHYWE measureApp and select the sensor "Voltage".
- Select the sampling rate of your choice. The higher the sampling rate, the more accurate the measurement.

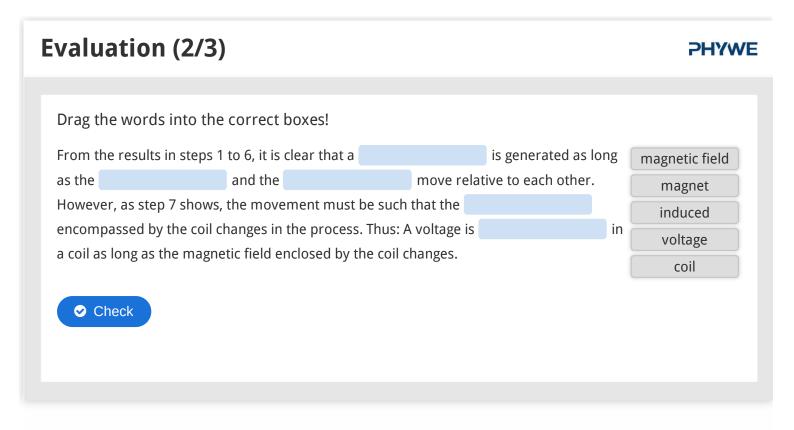
Procedure (2/2)

PHYWE

- 1. Move the magnet into the coil with the north pole first.
- 2. Move the magnet out of the coil again.
- 3. Move the magnet into the coil with the south pole first.
- 4. Move the magnet out of the coil again.
- 5. Move the magnet in and out of the coil faster.
- 6. Let the magnet rest in the coil.
- 7. Rotate the magnet in the coil around the longitudinal axis.
- 8. Replace the 400 turns coil with a 1600 turns coil and repeat the previous steps.

PHYWE

Report


Evaluation (1/3)

PHYWE

Movement	Observation	Movement	Observation
North pole into coil		Faster movement of the magnet	
North pole out of coil		Magnet rests in the coil	
South pole into coil		Rotation of the magnet around the longitudinal axis	
South pole out of coil		As 1. to 4. for coil with 1600 turns.	

Evaluation (3/3)

PHYWE

Drag the words into the correct boxes!

The ______ of the induced voltage depends on whether the magnet is ______ pole moving into or out of the coil and which ______ of the magnet is facing induction voltage the coil. The ______ is higher the ______ the _____ the _____ faster movement and the higher the number of turns of the induction coil.

Check

lide 14: Influence of the movement of the magnet	0/9
Slide 15: Induction voltage	0/4
	Total score 0/9

