

The direct current generator (DEMO)

Physics	Electricity & Magne	etism Electroma	Electromagnetism & Induction		
Physics	Electricity & Magne	m Electric generator, motor, transformer			
Difficulty level	QQ Group size	Preparation time	Execution time		
medium	1	10 minutes	20 minutes		

This content can also be found online at:

http://localhost:1337/c/617aac6e8e47ed0003a82ba0

PHYWE

Teacher information

Application PHYWE

Test setup

An electric generator is an electrical machine that converts kinetic energy into electrical energy. The generator is the counterpart of the electric motor, which converts electrical energy into kinetic energy. It is based on the principle of electromagnetic induction discovered by Michael Faraday in 1831.

Other teacher information (1/2)

PHYWE

Previous

No prior knowledge is required.

Principle

If a coil is rotated in a magnetic field, an electrical voltage is generated at its ends (induction voltage). After each half turn of the coil, the voltage changes its sign. If the poles of the coil winding are reversed at this moment with the aid of a so-called collector, a DC voltage is produced. The resulting electrical energy can be used to operate an incandescent lamp.

Other teacher information (2/2)

PHYWE

Learning

Students should understand how a DC generator works.

Tasks

Investigate how to generate voltage and current using a DC generator.

PHYWE

Student Information

Motivation PHYWE

An electric generator is an electrical machine that converts kinetic energy into electrical energy. The generator is the counterpart of the electric motor, which converts electrical energy into kinetic energy. It is based on the principle of electromagnetic induction discovered by Michael Faraday in 1831.

Historical generator

Equipment

Position	Material	Item No.	Quantity
1	PHYWE Demo Multimeter ADM 3: current, voltage, resistance, temperature	13840-00	1
2	Bench clamp	02012-00	1
3	Plate holder, opening width 2 - 35 mm	06509-00	1
4	U-magnet, large, U-shaped, limb length 130 mm, colored poles	06320-00	1
5	Motor set	06550-00	1
6	Rotor coil, Double-T armature	06554-00	1
7	Cord pulley	06558-01	1
8	Crank handle	06559-01	1
9	Lamp holder E10, on base plate	06002-00	1
10	Filament lamps 4V/0.04A, E10, 10	06154-03	1
11	Filament lamps 3.5V/0.2A,E10, 10	06152-03	1
12	Connecting cord, 32 A, 750 mm, red	07362-01	2
13	Connecting cord, 32 A, 750 mm, blue	07362-04	1

Structure (1/2)

PHYWE

- Set up the experiment according to Fig. 1.
- Assemble the motor attachment according to Fig. 2.
- Slide the axle [1] of the double T-anchor into the bearing bore [3] of the motor attachment and screw it tight with the cord washer [2].
- Put the crank on the pulley.

Fig. 1

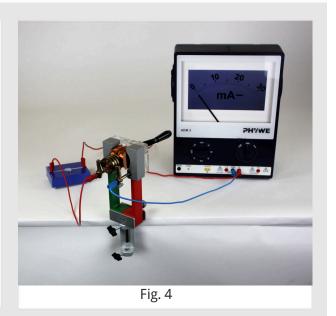
Structure (2/2)

Fig. 2

Fig. 3

- Place the grinding brushes [4] of the motor attachment against the interrupted slip ring as shown in Fig. 3.
- Pull the knurled screw [5] slightly upwards so that the two angled lever arms
 of the grinding brushes are in line. This tensions the spring and presses the
 brushes onto the slip rings.
- Tighten the knurled screws [5]. This establishes the electrical contact between armature coils and connection sockets [6].

Procedure (1/3)


PHYWE

- Set up the experiment according to Fig. 1.
- Connect the connection sockets [6] of the motor to the inputs of the multimeter for voltage measurement.
- Select the measuring range 1 V-.
- Turn the crank slowly and continuously in one direction, watch the meter.
- Note: If the pointer moves counterclockwise, change the direction of rotation or replace the connections on the meter.
- Set the measuring range to 3 V-.

Procedure (2/3)

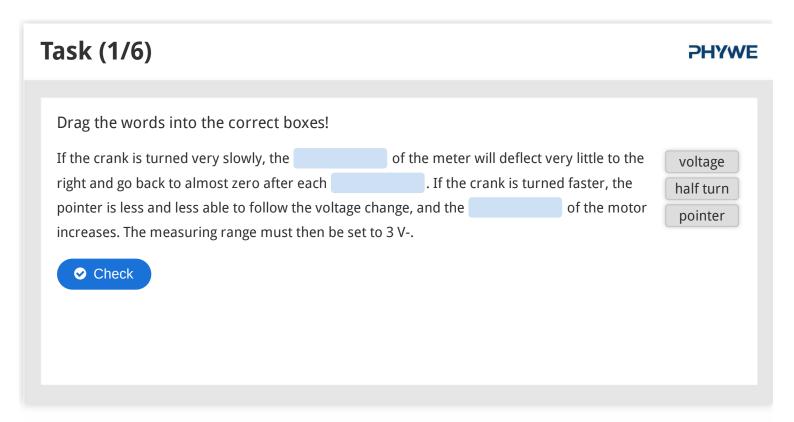
PHYWE

- Increase the rotation speed.
- Adjust the zero point of the pointer on the meter slightly towards the center.
- Carefully change the direction of rotation and observe the pointer deflection.
- Reset the zero point of the pointer.

Procedure (3/3)

PHYWE

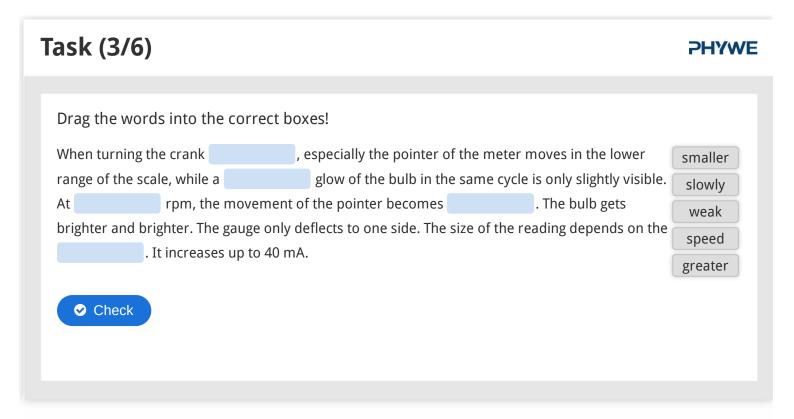
- Modify the experiment according to Fig. 4, connect the meter and the 4V bulb in series and connect them to the motor. Pay attention to the correct polarity.
- Select the measuring range 100 mA-.
- o Turn the crank slowly at first, then faster. Observe the meter and bulb.
- Insert the 3.5 V / 0.2 A bulb.
- Select the measuring range 300 mA-.
- Turn the crank quickly, watch the meter and bulb.

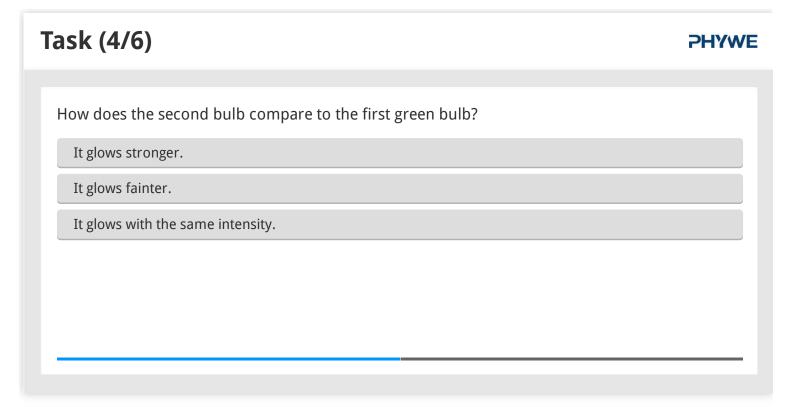


Report

Task (2/6)

How does the pointer behave after the direction of rotation of the crank has been changed?


He's not striking out.


He's striking out in the opposite direction.

He's striking out in the same direction.

