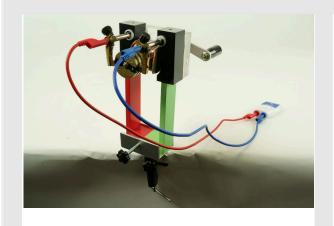


Vergleich der Rotorspulen (DEMO) mit Cobra SMARTsense

Physik	Elektrizität & Magr	etismus Elektrom	Elektromagnetismus & Induktion	
Schwierigkeitsgrad	QQ Gruppengröße	Uorbereitungszeit	Durchführungszeit	
mittel	2	10 Minuten	20 Minuten	

This content can also be found online at:

http://localhost:1337/c/61b30a29794d260003368645



PHYWE

Lehrerinformationen

Anwendung

Versuchsaufbau

Ein elektrischer Generator ist eine elektrische Maschine, die Bewegungsenergie in elektrische Energie wandelt. Der Generator ist das Gegenstück zum Elektromotor, der elektrische Energie in Bewegungsenergie wandelt. Er beruht auf dem von Michael Faraday 1831 entdeckten Prinzip der elektromagnetischen Induktion.

Sonstige Lehrerinformationen (1/2)

PHYWE

Vorwissen

Es wird kein Vorwissen benötigt.

Prinzip

In diesem Versuch werden einzelne Bauteile eines Gleichstromgenerators überprüft. Im ersten Versuchsteil wird untersucht, welche Auswirkung die Windungszahl der Rotorspule hat. Im zweiten Teil wird statt einem Permanentmagnet ein Elektromagnet eingebaut und die Spannung des Elektromagneten untersucht.

Sonstige Lehrerinformationen (2/2)

PHYWE

Lernziel

Die Schüler sollten verstehen, wie ein Gleichstromgenerator funktioniert.

Aufgaben

Untersuche die Abhängigkeit der Induktionsspannung von der Windungszahl der Rotorspule.

PHYWE

Schülerinformationen

Motivation PHYWE

Ein elektrischer Generator ist eine elektrische Maschine, die Bewegungsenergie in elektrische Energie wandelt. Der Generator ist das Gegenstück zum Elektromotor, der elektrische Energie in Bewegungsenergie wandelt. Er beruht auf dem von Michael Faraday 1831 entdeckten Prinzip der elektromagnetischen Induktion.

Historischer Generator

Material

Position	Material	ArtNr.	Menge
1	PHYWE Netzgerät, universal, RiSU 2019 DC: 018 V, 05 A / AC: 2/4/6/8/10/12/15 V, 5 A	13504-93	1
2	Tischklemme	02012-00	1
3	Plattenhalter, Öffnungsweite 2 - 35 mm	06509-00	1
4	Magnet, groß, U-förmig, Schenkellänge 130 mm, Pole farbig	06320-00	1
5	Motoraufsatz	06550-00	1
6	Schnurscheibe	06558-01	1
7	Kurbel	06559-01	1
8	Rotorspule, Doppel-T-Anker	06554-00	1
9	Rotorspule, 10 Windungen	06552-00	1
10	Rotorspule, 1 Windung	06551-00	1
11	Eisenkern, U-förmig, geblättert	06501-00	1
12	Spule, 1200 Windungen	06515-01	2
13	Verbindungsleitung, 32 A, 750 mm, rot Experimentierkabel, 4 mm Stecker	07362-01	3
14	Verbindungsleitung, 32 A, 750 mm, blau Experimentierkabel, 4 mm Stecker	07362-04	3
15	Verbindungsleitung, 32 A, 750 mm, schwarz Experimentierkabel, 4 mm Stecker	07362-05	1
16	Cobra SMARTsense - Voltage, ± 30 V (Bluetooth + USB)	12901-01	2
17	measureAPP - die kostenlose Mess-Software für alle Endgeräte	14581-61	1

Aufbau (1/4)

Zur Messung mit den **Cobra SMARTsense Sensoren** wird die **PHYWE measureAPP** benötigt. Die App kann kostenfrei im jeweiligen App Store (QR-Codes siehe unten) heruntergeladen werden. Bitte überprüfe vor dem Starten der App, ob auf deinem Gerät (Smartphone, Tablet, Desktop-PC) **Bluetooth aktiviert** ist.

Android

Windows

Aufbau (2/4)

Versuchsteil 1:

- Setze den Motoraufsatz nach Abb. 1 und Abb. 2 zusammen.
- Schiebe die Achse [1] des Doppel-T-Ankers in die Lagerbohrung [3] des Motoraufsatzes, schraube sie mit der Schnurscheibe [2] fest und stecke die Kurbel auf die Schnurscheibe.
- Lege die Schleifbürsten [4] des Motoraufsatzes nach Abb. 2 an den unterbrochenen Schleifring [7] an und befestige sie mit den Rändelschrauben [5] so, dass die Federn dadurch gespannt werden und die Bürsten auf die Schleifringe drücken.

Abb. 1

Aufbau (3/4)

 Schraube die Rändelschrauben [5] fest. Dadurch ist der elektrische Kontakt zwischen Ankerspulen und Anschlussbuchsen [6] hergestellt.

• Baue den Versuch nach Abb. 3 auf.

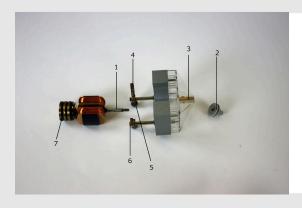


Abb. 2

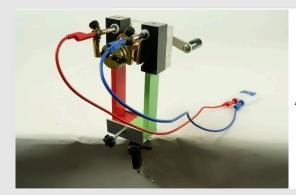


Abb. 3

PHYWE

Aufbau (4/4)

Versuchsteil 2:

- Baue den Versuch nach Abb. 4 auf.
- Setze Den Motor wie in Versuchsteil 1 zusammen (Abb. 1 und 2).
- Setze die Spulen (1200 Windungen) auf den Eisenkern und schalte sie mit dem Netzgerät (Gleichstrom) in Reihe.
- Schalte den zweiten SMARTsense-Sensoren parallel zur Spannungsquelle.

Abb. 4

Durchführung (1/3)

PHYWE

Cobra SMARTsense

- Schalte die SMARTsense-Sensoren ein und stelle sicher, dass sich das Endgerät mit Bluetooth Geräten verbinden kann.
- Öffne die PHYWE measureApp und wähle die "Voltage" Sensoren aus.
- Wähle die Abtastrate deiner Wahl. Je höher diese ist desto genauer wird die Messung.

Durchführung (2/3)

PHYWE

Versuchsteil 1:

- o Kurbel mit konstanter Drehzahl und beobachte die induzierte Spannung in der Messsoftware.
- o Baue den Generator um. Setze dabei die Rotorspule mit 10 Windungen ein.
- Kurbel mit etwa der gleichen Drehzahl wie bei dem Doppel-T-Anker und beobachte wieder die induzierte Spannung in der Messsoftware.
- Baue den Generator erneut um. Setze dabei die Rotorspule mit 1 Windung ein.
- Kurbel wieder mit etwa der gleichen Drehzahl und beobachte die induzierte Spannung in der Messsoftware.
- Vergleiche die induzierten Spannungen.

Durchführung (3/3)

PHYWE

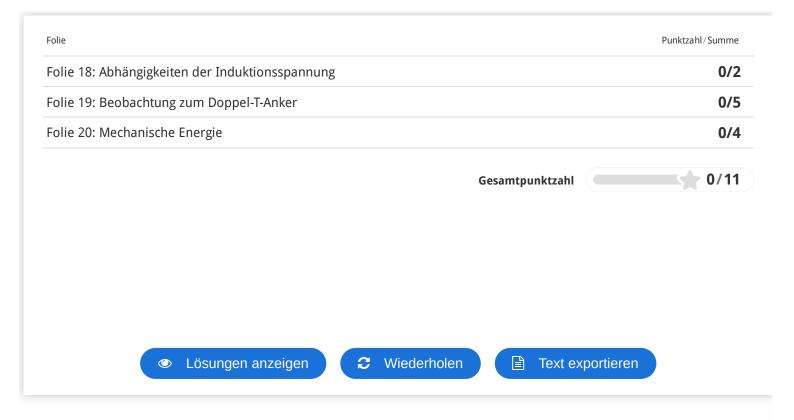
Versuchsteil 2:

- Kurbel mit konstanter Drehzahl.
- Begrenze die Stromstärke beim Netzgerät auf 1 Ampere und erhöhe in 4 V Schritten die Spannung am Netzgerät. Zeichne die Induktionspannung für jeden 4 V Schritt mit der Messoftware auf.
- Baue den Generator um und wiederhole die Versuchsdurchführung mit der Rotorspule mit 10 Windungen und 1 Windung.
- Vergleiche deine Ergebnisse.

Protokoll

Aufgabe (1/5)							
Messwerte Versuchsteil 1:							
U_{ind} [mV]	Doppel-T-Anker	Rotorspule 10 Windungen	Rotorspule 1 Windung				

ufgabe (2/5	5)		PHYWE
Messwerte Versu	chsteil 2:		
U_0 [V]	Doppel-T-Anker	Rotorspule 10 Windungen	Rotorspule 1 Windung
0			
4			
8			
12			
16			


Wie ist die Abhängigkeit zwischen Induktionsspannung und Speisespannung? antiproportional proportional keine Abhängigkeit

Aufgabe (4/5) **PHYWE** Ziehe die Wörter in die richtigen Felder! Der hat 2 mal 300 Windungen. Aus Punkt 2. müsste Doppel-T-Anker dieser eine 60 mal höhere als die 10 mit Windungen erwirken. Rotorspule Jedoch ist die induzierte Spannung noch wesentlich höher. Grund dafür ist der Eisenkern des Doppel-T-Ankers. Induktionsspannung Überprüfen

Aufgabe (5/5) Ziehe die Wörter in die richtigen Felder! Die ist bei höherer , sowie mechanische Energie bei einer höheren Speisespannung , da man deutlich spürbar kurbeln muss. kräftiger Windungszahl ✓ Überprüfen

