curricuLAB[®] PHYWE

Comparison of the rotor coils (DEMO)

Ø Difficulty level

medium

This content can also be found online at:

22

Group size

ᠿ Preparation time

10 minutes

20 minutes

http://localhost:1337/c/6493027a7844c30002a65ea0

Teacher information

Application

PHYWE

Experimental setup

An electrical generator is an electrical machine that converts kinetic energy into electrical energy. The generator is the counterpart to the electric motor, which converts electrical energy into kinetic energy. It is based on the principle of electromagnetic induction discovered by Michael Faraday in 1831.

Other teacher information (1/2)

PHYWE

Prior knowledge

No prior knowledge is required.

In this experiment, individual components of a direct current generato

In this experiment, individual components of a direct current generator are tested. In the first part of the experiment, the effect of the number of turns of the rotor coil is examined. In the second part, an electromagnet is installed instead of a permanent magnet and the voltage of the electromagnet is examined.

Other teacher information (2/2)

PHYWE

Student information

Motivation

An electrical generator is an electrical machine that converts kinetic energy into electrical energy. The generator is the counterpart to the electric motor, which converts electrical energy into kinetic energy. It is based on the principle of electromagnetic induction discovered by Michael Faraday in 1831.

PHYWE

Historical generator

Equipment

Position	Material	Item No.	Quantity
1	PHYWE Power supply, universal, analog display DC: 18 V, 5 A / AC: 15 V, 5 A	13503-93	1
2	Bench clamp	02012-00	1
3	Plate holder, opening width 2 - 35 mm	06509-00	1
4	U-magnet, large, U-shaped, limb length 130 mm, colored poles	06320-00	1
5	Motor set	06550-00	1
6	Cord pulley	06558-01	1
7	Crank handle	06559-01	1
8	Rotor coil, Double-T armature	06554-00	1
9	Rotor coil,10 turns	06552-00	1
10	Rotor coil,1 turn	06551-00	1
11	Iron core, U-shaped, laminated	06501-00	1
12	Coil, 1200 turns	06515-01	2
13	Connecting cord, 32 A, 750 mm, red	07362-01	3
14	Connecting cord, 32 A, 750 mm, blue	07362-04	3
15	Connecting cord, 32 A, 750 mm, black	07362-05	1
16	Cobra SMARTsense Voltage - Sensor for measuring electrical voltage \pm 30 V (Bluetooth + USB)	12901-01	2
17	measureAPP - the free measurement software for all devices and operating systems	14581-61	1

Set-up (1/4)

PHYWE

For measurement with the **Cobra SMARTsense sensors** the **PHYWE measureAPP** is required. The app can be downloaded free of charge from the relevant app store (see below for QR codes). Before starting the app, please check that on your device (smartphone, tablet, desktop PC) **Bluetooth** is **activated**.

Set-up (2/4)

Experiment part 1:

- Assemble the motor attachment according to fig. 1 and fig. 2.
- Push the axle [1] of the double T-anchor into the bearing hole [3] of the motor attachment, screw it tight with the pulley [2] and put the crank on the pulley.
- Place the abrasive brushes [4] of the motor attachment on the interrupted slip ring [7] as shown in Fig. 2 and fasten them with the knurled screws [5] so that the springs are tensioned and the brushes press on the slip rings.

Fig. 1

Set-up (3/4)

PHYWE

- Tighten the knurled screws [5]. This establishes the electrical contact between the armature coils and the connection sockets [6].
- Set up the experiment according to Fig. 3.

Set-up (4/4)

Experiment part 2:

- $\circ~$ Set up the experiment according to Fig. 4.
- Assemble the motor as in experiment part 1 (fig. 1 and 2).
- Place the coils (1200 turns) on the iron core and connect them in series with the power supply unit (direct current).
- Connect the second SMARTsense sensor in parallel to the voltage source.

Fig. 4

PHYWE

7/12

PHYWE

PHYWE

Procedure (2/3)

PHYWE

Experiment part 1:

- crank at constant speed and observe the induced voltage in the measuring software.
- Rebuild the generator. Insert the rotor coil with 10 turns.
- crank at about the same speed as with the double-T armature and again observe the induced voltage in the measuring software.
- Rebuild the generator again. Insert the rotor coil with 1 turn.
- crank again at about the same speed and observe the induced voltage in the measuring software.
- Compare the induced voltages.

Procedure (3/3)

PHYWE

Experiment part 2:

- Crank with constant speed.
- Limit the current at the power supply unit to 1 ampere and increase the voltage at the power supply unit in 4 V steps. Record the induction voltage for each 4 V step with the measuring software.
- Rebuild the generator and repeat the experiment with the rotor coil with 10 turns and 1 turn.
- Compare your results.

www.phywe.de

Task (2/5)

PHYWE

PHYWE

Task (3/5)

What is the dependence between induction voltage and supply voltage?

proportional

No dependence

antiproportional

Task (4/5)

PHYWE

Drag the words	into the correct boxes!			
The	has 2 times 300 turns. F	2 times 300 turns. From point 2, this should		
produce an	60 times higher than the		induction voltage	
	with	turns. However, the induced	rotor coil	
voltage is much h	iron core			
double-T armatur	double-T armature			
Check				

info@phywe.de

www.phywe.de

Slide Score/Total Slide 19: Observation on the double T anchor 0/5 Slide 20: Mechanical energy 0/11	Task (5/5)				ЭНУЖ
The is with a higher , as well as with a higher supply voltage, since you have to crank more forcefully . . mechanical energy Check Stide Score/Total Silde Score/Total Score/Total Silde 18: Induced voltage dependencies 0/2 Silde 19: Observation on the double T anchor 0/5 Silde 20: Mechanical energy 0/4 Total score 0/11	Drag the words into	the correct boxes!			
slide 18: Induced voltage dependencies 0/2 Slide 19: Observation on the double T anchor 0/5 Slide 20: Mechanical energy 0/4 Total score 0/11	The crank Check	is , as well as with a higher	with a higher	you have to	clearly noticeable more forcefully number of turns mechanical energy
Slide 18: Induced voltage dependencies0/2Slide 19: Observation on the double T anchor0/5Slide 20: Mechanical energy0/4Total score0/11	Slide				Score / Total
Slide 19: Observation on the double T anchor 0/5 Slide 20: Mechanical energy 0/4 Total score 0/11	Slide 18: Induced voltage	dependencies			0/2
Slide 20: Mechanical energy 0/4 Total score 0/1	Slide 19: Observation on t	the double T anchor			0/5
Total score 0/11	Slide 20: Mechanical ener	ЗУ			0/4
				Total score	0/11

