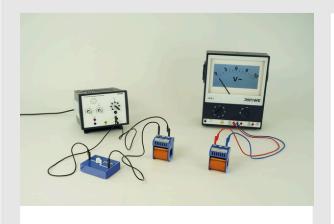


Generation of induced voltage with an electromagnet (DEMO)

Physics	Electricity & Magnetism	Electrom	Electromagnetism & Induction	
Difficulty level	QQ Group size	Preparation time	Execution time	
medium	-	10 minutes	20 minutes	

This content can also be found online at:

http://localhost:1337/c/6478ff59d57c800002376ced



PHYWE

Teacher information

Application PHYWE

Experimental setup

Transformers are built into many electrical devices. In order to transform current well, the coils must not be too far apart and an iron core is important.

In this experiment, the induced voltage is measured as a function of the distance between the coils and as a function of the iron core.

Other teacher information (1/2)

PHYWE

Prior knowledge

Principle

No prior knowledge is required.

When alternating current flows through a coil, it creates a varying magnetic field, which in turn can induce a current in another coil.

Other teacher information (2/2)

PHYWE

Learning objective

Tasks

Students should understand how a transformer works.

Investigate the functioning of a transformer with and without an iron core.

Theory

The magnetic flux density B of a coil is:

$$B = \mu_r \cdot \mu_0 \cdot I \cdot \frac{n}{l}$$

 μ_0 is the magnetic field constant in a vacuum, μ_r is the magnetic permeability, which depends on the material. $\frac{n}{l}$ describes the winding density. With alternating current, the magnetic field also changes, of course. The change in the magnetic field induces a current in the secondary coil.

Lenz's rule:

$$\oint_{\delta A} ec{E} \cdot \mathrm{d}ec{s} = - \int A rac{\delta B}{\delta t} \cdot \mathrm{d}ec{A}$$

Student information

Motivation PHYWE

Transformers are built into many electrical devices. In order to transform current well, the coils must not be too far apart and an iron core is important.

In this experiment, the induced voltage is measured as a function of the distance between the coils and as a function of the iron core.

A transformer station

Equipment

Position	Material	Item No.	Quantity
1	PHYWE Power supply, universal, analog display DC: 18 V, 5 A / AC: 15 V, 5 A	13503-93	1
2	PHYWE Demo Multimeter ADM 3: current, voltage, resistance, temperature	13840-00	1
3	Iron core, I-shaped, laminated, L=300mm	06504-01	1
4	Coil, 600 turns	06514-01	2
5	Two-way switch, single pole	06005-00	1
6	Connecting cord, 32 A, 750 mm, red	07362-01	1
7	Connecting cord, 32 A, 750 mm, blue	07362-04	1
8	Connecting cord, 32 A, 750 mm, black	07362-05	3

Set-up PHYWE

- Set up the experiment according to Figure 1.
- In the primary circuit, connect the power supply unit, the changeover switch and the coil (as primary coil) in series.
- The secondary circuit consists only of the secondary coil and the demonstration multimeter.

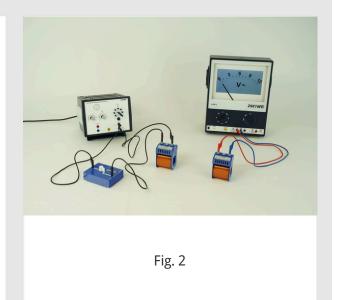


Fig. 1

Procedure (1/2)

PHYWE

- Set the demonstration multimeter to AC voltage and select a suitable measuring range (e.g. 0...15 V~).
- Switch on the power supply and increase the primary voltage one step at a time (e.g. 6 V, 10 V and 15 V) with the switch closed. Observe the secondary voltage in each case.
- \circ Select the primary voltage from $U_P=15\mathrm{V}$ and increase the distance between the coils step by step according to figure 2: e.g. in steps of 5 cm to approx. 20 cm. Observe the voltage display on the demonstration multimeter at each step.

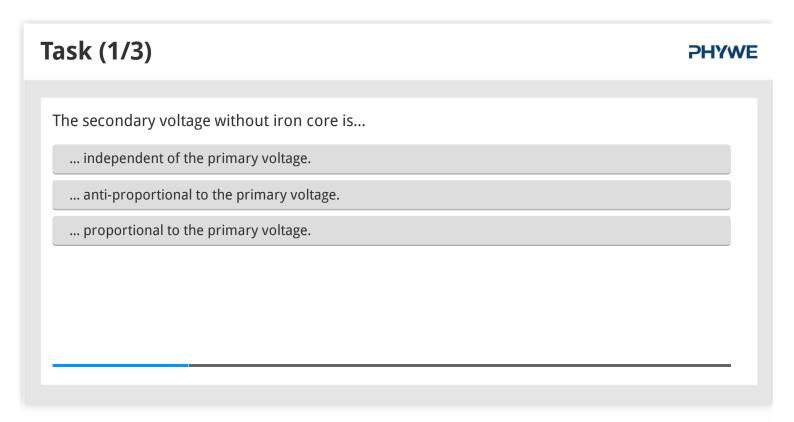
Procedure (2/2)

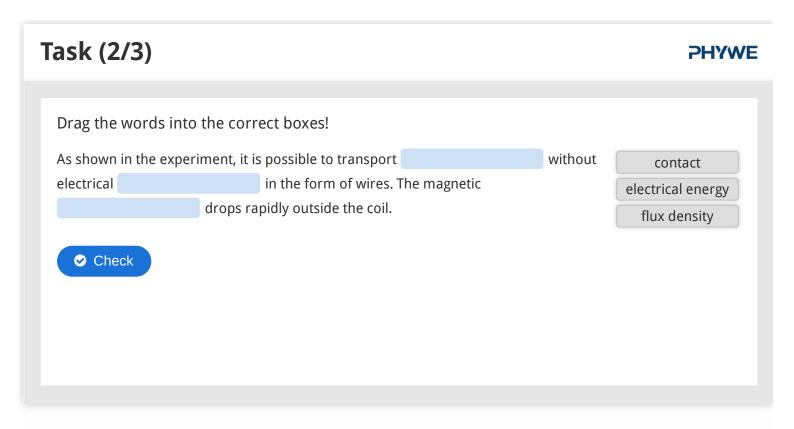
PHYWE

Fig. 3

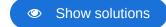
Fig. 4

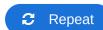
- Now push the coils together again in contact. Open the switches and push the iron core into the two coils until it is approximately in the middle (see Fig. 3). Close the switches and observe the secondary voltage for different primary voltages.
- \circ Finally, increase again at a primary voltage of $U_P=15\mathrm{V}$ the distance between the two coils step by step as before (see Fig. 4) and observe the secondary voltage.


PHYWE



Report





Task (3/3) **PHYWE** Drag the words into the correct boxes! However, the used has a much higher magnetic permeability , which amplifies the magnetic field and and accordingly a much higher iron core thus leads to a significantly increased induced in the secondary coil, voltage which is still clearly detectable even at a greater susceptibility distance Check

Slide	Score/Total
Slide 13: Dependence between secondary and primary voltage	0/4
Slide 14: Functionality of the transformer	0/3
Slide 15: Properties of the iron core	0/5
	Total score 0/12

