

Color mixing in experiments on optical profile bench with LED lamp

Physics

Light & Optics

Optical devices & lenses

 Difficulty level Group size Preparation time Execution time

-

-

30 minutes

40 minutes

This content can also be found online at:

<http://localhost:1337/c/63e36b360b70ff00030f1434>

General information

Application

We encounter the principle of additive colour mixing every day. The colours on mobile phone, computer or television screens are formed by mixing the RGB colours. The individual pixels consist of three subpixels in the colours red, green and blue. These subpixels can each change the brightness of their colour. With these three subpixels, all colours can now be represented. To obtain a white image, each subpixel is activated. For a black image, all three subpixels are deactivated.

Other information (1/2)

PHYWE

Prior knowledge

Colours are defined as different wavelengths of light between 380nm and 750nm perceived. The colours of the light are called spectral colours.

Principle

When light rays of different colours meet, their spectral colours are added. This is called additive colour mixing. The mixed spectrum always contains more colour volume than the respective individual colours before it. Usually, three different colours are combined with each other in additive colour mixing.

Other information (2/2)

PHYWE

Learning objective

The students should learn the principle of additive color mixing.

Tasks

- Investigate the different combinations of LEDs and observe the resulting spectrum.

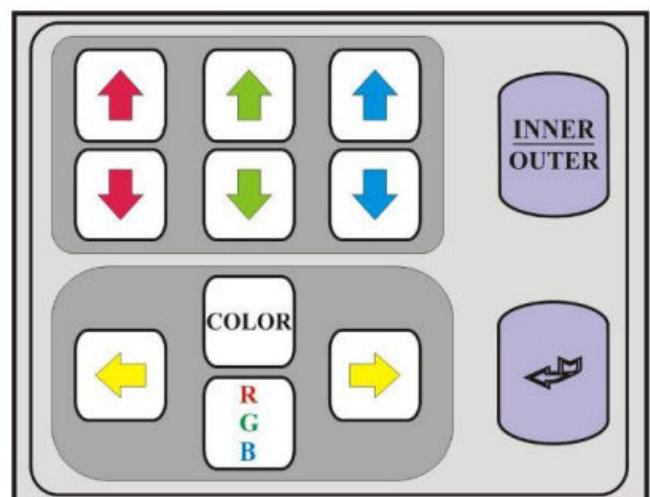
Safety instructions

PHYWE

The LEDs in the product are "ultra bright". Do not look at the LEDs up close when switching on. Do not stare at a bright light source.

Theory (1/3)

PHYWE

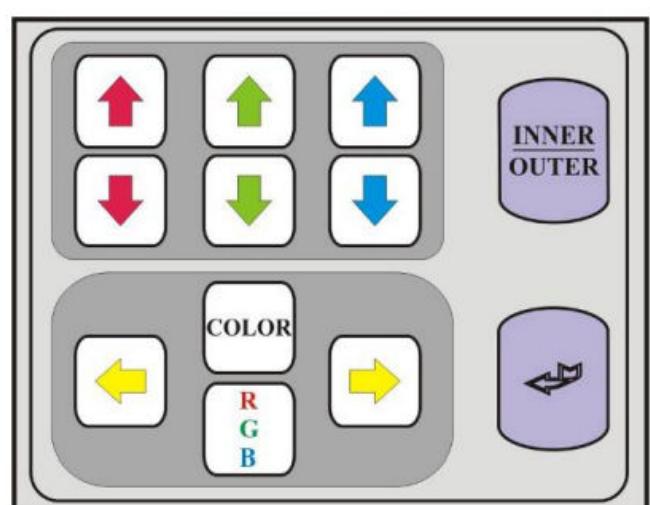

The LED fixture is equipped with a set of LEDs with the primary colours red, green and blue. The fixture consists of six LEDs (three inner LEDs and three outer LEDs). Both the three inner LEDs (red, green and blue) and the three outer LEDs (red, green and blue) are arranged in a circular frame with 120 degree spacing and equal distance to the centre. The radii of curvature for all three outer LEDs are at the same point from the centre of the frame so that the colour mixing is uniform. A control unit is provided to amplify the ultra-bright (red, green and blue) LEDs. The control unit can be operated in indoor or outdoor mode to vary the intensity of the LEDs from 0% to 99%. An LCD screen displays the current setting of each LED. A wide range of colours allows mixing in different ratios. Each LED has a lens that focuses the light into a wide circular beam. A diffuser ensures uniform light distribution. The pinhole included in the scope of delivery creates circles of light that can be displayed on the translucent shade. This effect is clearly visible from both sides.

Theory (2/3)

PHYWE

Control unit keypad

- Red, green, blue up key (\uparrow) and down key (\downarrow): With these keys, the intensity of the respective colour can be changed from 0 to 99% in a step of 1%.
- INNER/OUTER key: With this key, the inner or outer LED can be selected.
- Enter key: This key saves or updates the current value of the newly formed colour.



Theory (3/3)

PHYWE

Control unit keypad

- Left button (\leftarrow): This key is used to display the previous colour and its intensity level.
- Right button (\rightarrow): This key displays the next colour and its intensity.
- COLOR key: This key is used to select a programme mode.
- R G B key: This key displays the current value or changes the current value of the colours red, blue and green.

Equipment

Position	Material	Item No.	Quantity
1	LED lamp for colour mixing incl. controller	13761-99	1
2	Optical profile-bench for student experiments, $l = 600$ mm	08376-00	1
3	Slide mount for optical bench	09822-00	3

PHYWE

Setup and Procedure

Structure (1/2)

PHYWE

Experimental setup

- Place the optical profile bench on the test table and insert the LED light into the tab at the left end of the bench.
- Attach the screen to the far right end of the bench.
- Now place the cover between the LED luminaire and the shade.

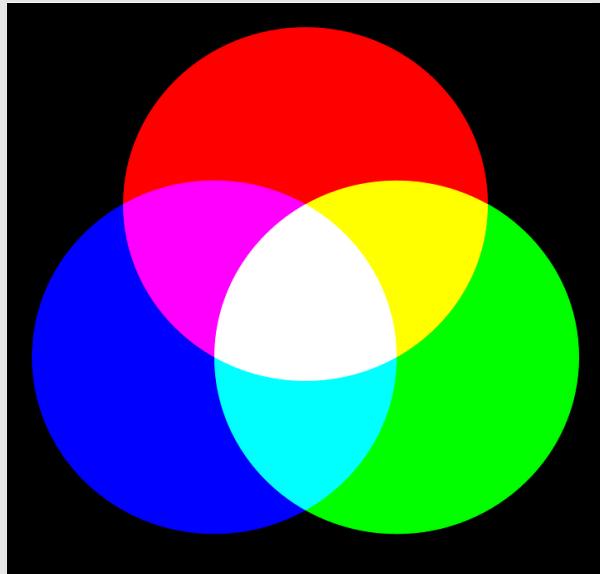
Structure (2/2)

PHYWE

- Connect the LED light to the control unit.
- The lamp is operated with the 5V/2A regulated plug-in power supply unit. Only use the light with the power supply unit provided. Connect the supplied 5V power supply unit to the controller and insert the plug into the socket.
- By default, each LED is set to 0% after switching on for safety reasons. The brightness can be increased gradually by pressing the corresponding up key. Alternatively, full brightness can be achieved immediately by pressing the ↓ key once when the display shows 0%.

Control unit of the LED luminaire

Procedure


PHYWE

- First switch on the green and the red LED and observe the result. Examine how the mixed colour changes when the intensity is varied.
- Repeat the process for the following combinations: Blue + Green, Blue + Red.
- Now switch on all three LEDs and vary the light intensity, what can be observed at maximum intensity of all colours?
- Note down the observations.

Evaluation (1/2)

PHYWE

- Depending on the colour and intensity combination, different mixed colours can be observed on the screen.
- An overview of the different mixed colours can be seen in the illustration on the left. Here, the individual spectral colours have an intensity of 100%.

Evaluation (2/2)

PHYWE

Fill in the blanks based on the observations.

The _____ of additive colour mixing are _____, green and red. The following _____ are created when the three basic colours are mixed additively. The basic colours are assumed to have the same intensity.

Green + red results in _____
Blue + green results in _____
Blue + red results in _____
Green + blue + red results in _____.

magenta

basic colours

yellow

mixed colours

cyan

white

blue

 Check

9/10

Slide

Score / Total

Slide 15: Color mixing

0/7

Total score

 0/7

 Show solutions

 Repeat

10/10