

Termogenerador semiconductor

Física	Termodinámica	Termodinámica Energía térmica	
Física Electricidad y M		agnetismo La corriente eléctrica y su efecto	
ciencia aplicada	Ingeniería	Ingeniería eléctrica	
ciencia aplicada	Ingeniería	Energías renovables	Calor
Nivel de dificultad	Tamaño del grupo 2	Tiempo de preparación 45+ minutos	Tiempo de ejecución 45+ minutos

This content can also be found online at:

http://localhost:1337/c/60662eeaf1639a0003d1aae7

Información para el profesor

Aplicación

Fig. 1: Montaje experimental para medir la tensión en vacío y la corriente de cortocircuito en función de la diferencia de temperatura.

Los semiconductores se utilizan ampliamente como detectores. Como tales, tienen aplicaciones industriales en cámaras.

Información adicional para el profesor (1/2)

PHYWE

Conocimiento previo

Principio

El conocimiento previo para este experimento se encuentra en la sección de principio.

En un termogenerador de semiconductores, la tensión en vacío y la corriente de cortocircuito se miden en función de la diferencia de temperatura. Se determinan la resistencia interna, el coeficiente de Seebeck y la eficiencia.

Información adicional para el profesor (2/2)

PHYWE

Objetivo

El objetivo de este experimento es investigar el efecto Seebeck.

Tareas

Para poder medir voltaje sin carga $U_{\rm o}$ y corriente de cortocircuito $I_{\rm s}$ a diferentes diferencias de temperatura y para determinar el coeficiente de Seebeck.

Para poder medir corriente y voltaje a una diferencia de temperatura constante pero con diferentes resistencias de carga, y para determinar la resistencia interna $R_{\rm i}$ de los valores medidos.

Determinar la eficiencia de conversión de energía, a partir de la cantidad de calor consumido y la energía eléctrica producida por unidad de tiempo.

Principio PHYWE

Si se crea una caída de temperatura a lo largo de una rama sin corriente de un conductor compuesto de diferentes materiales, el calor fluye desde la región más cálida a la más fría. Los portadores de carga que participan en esta transferencia de calor están distribuidos de manera desigual a lo largo del conductor. Se configura una intensidad de campo interno, que se puede demostrar que es la fem. $U_{\rm o}$ En los extremos abiertos de la conductora (efecto Seebeck).

El nivel de voltaje depende de la diferencia de temperatura y de los materiales utilizados. En una primera aproximación, el voltaje se puede escribir:

$$U_{
m o}=lpha_{1,2}(T_{
m h}-T_{
m c})=lpha_{1,2}\Delta T$$

Donde $a_{1,2}$ es el coeficiente de Seebeck de la combinación de materiales utilizados, T_h es la temperatura del lado caliente y T_c la temperatura del lado frío.

Material

Posición	Material	Artículo No.	Cantidad
1	Termogenerador con 2 baños de agua	04366-00	1
2	CAMBIADOR TERMICO	04366-01	2
3	PASTA CONDUCTIVA	03747-00	1
4	CAJA DE CONEXION	06000-00	1
5	REOSTATO, 33 OHMS, 3,1A	06112-02	1
6	Multímetro digital, 3 1/2-visualizado de caracteres	07122-00	2
7	CRONOMETRO DIGITAL, 24 h, 1/100 s y 1 s	24025-00	1
8	Termostato de inmersión Alpha A, hasta 100°C, 230 V	08493-93	1
9	Kit de circulación externa para Termostato Alpha A	08493-02	1
10	CUBETA PARA TERMOSTATO, 6 LITROS	08487-02	1
11	Termómetro de laboratorio, -10+110 °C	38056-00	1
12	Termómetro de laboratorio, -10+50°C	38034-00	1
13	RESISTENCIA 2 OHM 5%, 2W, G1	06055-20	1
14	RESISTENCIA 1 OHM 2%, 2W, G1	06055-10	1
15	RESISTENCIA 5 OHM 2%, 2W, G1	06055-50	1
16	RESISTENCIA 10 OHM 2%, 2W, G1	06056-10	1
17	Manguera de conexión, d int = 6 mm, l = 1 m	39282-00	4
18	Cable de conexión, 32 A, 500 mm, rojo	07361-01	3
19	Cable de conexión, 32 A, 500 mm, azul	07361-04	2
20	Conector de tubo recto, diámetro interior=6-10 mm	47516-01	2

Montaje y ejecución

Ejecución (1/2)

PHYWE

 Asegurar los intercambiadores de calor de tipo flujo a cada lado del termogenerador. Llenar el lado frío con agua del grifo y ajustar la temperatura del lado caliente en el termostato. Las dos temperaturas se miden utilizando los orificios del termogenerador previstos para tal fin. La corriente de cortocircuito y la tensión sin carga se miden directamente, sin tener en cuenta la resistencia interna del equipo de medida.

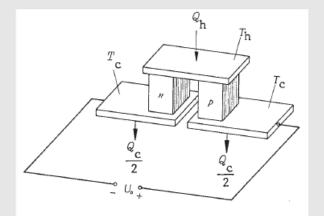
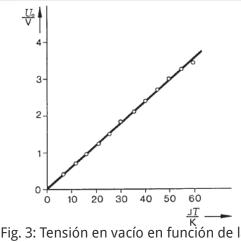


Fig. 2: Construcción de un elemento semiconductor Seebeck. Generalmente, varios elementos están conectados eléctricamente en serie y térmicamente en paralelo.

Ejecución (2/2)

PHYWE

- \circ Conectar el reostato $R_{
 m ext}$ al termogenerador a una diferencia de temperatura media constante. Mida la corriente y el voltaje en diferentes configuraciones y trace los resultados en un gráfico.
- \circ Retirar el intercambiador de calor que estaba conectado al termostato y colocar un baño de agua a rebosar de agua hirviendo en su lugar.. Medir la temperatura del lado caliente $T_h=f(t)$ y del lado frio $T_c=f(t)$ en función del tiempo. Medir la corriente y el voltaje a través de una resistencia externa de aproximadamente el mismo valor que la resistencia interna.



Resultados

Tarea 1 **PHYWE**

Aplicar la expresión de regresión $U_{
m o}=a+b\Delta T$ a los valores medidos enFig. 3, Obtenemos $\,b=0.0587rac{
m V}{
m K}$ con el error estándar $s_{
m b}=0.0006rac{
m V}{
m K}$

Fig. 3: Tensión en vacío en función de la diferencia de temperatura.

Tarea 1 (parte 2)

PHYWE

El termogenerador consta de 142 elementos conectados en serie. Por tanto, el coeficiente de Seebeck de la combinación de semiconductores utilizada es

$$lpha_{1,2} = 4.13 \cdot 10^{-4} rac{V}{K}$$

con el error estándar

$$s_{lpha 1,2} = 4.04 \cdot 10^{-4} rac{ ext{V}}{ ext{K}}$$

Como el cortocircuito también aumenta linealmente con la temperatura, la resistencia interna del termogenerador es constante en el rango de temperatura considerado.

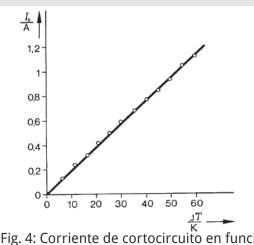


Fig. 4: Corriente de cortocircuito en función de la diferencia de temperatura.

Tarea 2 PHYWE

Aplicar la expresión de regresión U=a+bI a los valores medidos desde Fig. 5 obtenemos

$$a = U_{
m o} = 2.34 \ {
m V} \, s_{
m a} = s_{{
m U}_{
m o}} = 0.01 \ {
m V}$$

y
$$|b|=R_i=2.80~\Omega\,s_{
m b}=s_{
m R_i}=0.02~\Omega$$

y la corriente de cortocircuito $I_{
m s}=rac{U_{
m o}}{R_{
m i}}=0.84~{
m A}$ with $s_{
m I_{
m s}}=0.01~{
m A}$

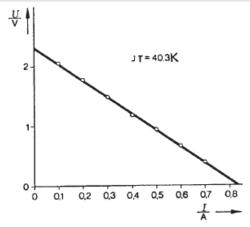


Fig. 5: Tensión terminal en función de la intensidad de la corriente de una diferencia de temperatura constante.

Tarea 3 PHYWE

De la Fig. 6 determinamos la pendiente de la curva (descendente) en un punto dibujando una tangente o por regresión lineal.

A una diferencia de temperatura ΔT de 40 K obtenemos lo siguiente para los valores medidos más cercanos, utilizando la expresión de regresión $\Delta T=a+bt$:

$$b = rac{d\Delta T}{dt} = -0.0361rac{ ext{K}}{ ext{s}}$$

Por lo tanto, podemos calcular la cantidad de calor Q que fluye a través del generador en tiempo unitario de acuerdo con

$$\frac{dQ}{dt} = P_{\text{th.}} = C \cdot (\frac{d\Delta T}{dt})$$

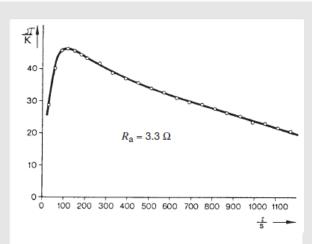
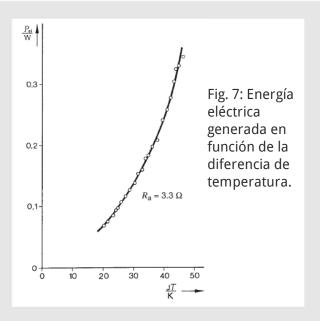


Fig. 6: Diferencia de temperatura en función del tiempo.

Tarea 3 (parte 2)


PHYWE

Como la masa de agua $m_w=0.194~{
m kgy}$ la capacidad calorífica específica del agua

$$c_{
m w}=4182rac{
m J}{
m K}$$
obtenemos $C=m_{
m w}\cdot c_{
m w}=811rac{
m J}{
m kg\,K}$

de modo que $P_{
m th.}=29.3rac{
m J}{
m s}$

La potencia eléctrica, medida a carga constante, P_{el} , se puede obtener de Fig. 7. Por una diferencia de temperatura $\Delta T = 40~{\rm K}$ obtenemos $P_{\rm el.} = 0.25~{\rm W}$, para que la eficiencia $\eta = \frac{P_{\rm el.}}{P_{\rm th.}} = 0.009~{\rm or}~0.9\%$

