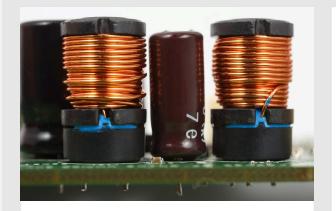


Coil in the AC circuit

Physics	Electricity & Magnetism		Electronics	
Difficulty level	QQ Group size	Preparation time	Execution time	
hard	-	45+ minutes	45+ minutes	

This content can also be found online at:

http://localhost:1337/c/64ac07604c88d10002e3406f



PHYWE

General information

Application PHYWE

Electromagnetic coils on a board

Alternating current refers to electrical current that changes its direction (polarity) in regular repetition and in which positive and negative instantaneous values sum up, so that the net current is zero on average over time.

Alternating current always has a real and an imaginary component. There is single-phase or multi-phase alternating current, which can be differentiated depending on the phase shift φ . Since a coil's inductance depends on the current and since the inductance is subject to Lenz's rule, a change in voltage is retarded due to the inserted coil. This property makes a coil in a AC circuit a commonly used frequency filter component.

Other information (1/2)

PHYWE

Prior knowledge

Scientific principle

Basic knowledge of physical quantities such as current, voltage and resistance should be available. Ideally, the process of electromagnetical induction should be known.

The coil is connected in a circuit with a voltage source of variable frequency. Due to the inductance of the coil, a phase shift of the current occurs. The impedance and phase displacements are determined as functions of frequency. Parallel and series impedances are measured in comparison.

Other information (2/2)

PHYWE

Learning objective

Tasks

After the successful completion of this experiment you will be able to theoretically describe the phenomenon of inductance with respect to alternating currents. You will also be able to experimentally determine the frequency dependend impedances and the caused phase shifts.

- 1. Determine the amplitude and phase of the inductive resistance as a function of the inductance.
- 2. Determine the amplitude and phase of an inductive resistance as a function of frequency.

Safety instructions

PHYWE

The general instructions for safe experimentation in science lessons apply to this experiment.

Theory (1/4)

PHYWE

Any change in current through a coil induces a counter electromotive force that opposes the change in current. Therefore, in AC circuits, the voltage across the coil leads the current through the coil. Mathematically, this relationship is best described by using current, voltage, and resistance as complex quantities and considering their real components.

The current-voltage relationship for a coil is:

$$U = L \cdot rac{dI}{dt}$$
 (1)

With ${\cal I}$ as current, ${\cal U}$ as voltage and ${\cal L}$ as inductance of the coil.

Theory (2/4)

If an alternating voltage

$$U = U_0 \cdot e^{i\omega t}$$
 (2)

is now applied, the following applies to the current

$$I = \frac{1}{i\omega L} \cdot U_0 \cdot e^{i\omega t}$$
 (3)

A coil therefore has the complex resistance

$$X_L=rac{U}{I}=i\omega L=2\pi if L$$
 (4)

If we now consider the real parts of equations (2), (3) and (4), we obtain the following relationships for voltage U, current I and resistance X_L :

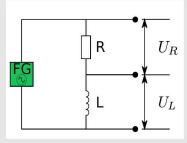
$$U = U_0 cos(\omega t)$$
 (5)

$$I=rac{U_{0}}{\omega L}cos(\omega t-rac{\pi}{2}=I_{0}cos(\omega t-rac{\pi}{2})$$
 (6)

$$X_L=rac{U_0}{I_0}=\omega L=2\pi fL$$
 (7)

Theory (3/4)

The total inductance of a series connection of coils is equal to the sum of the individual inductances:


$$L = L_1 + L_2 + \ldots + L_N = \sum_{i=1}^n L_i$$
 (8)

The ohmic resistance of several coils connected in series is the sum of the individual resistances:

$$R_L = R_1 + R_2 + \ldots + R_N = \sum_{i=1}^n R_i$$
 (9)

Theory (4/4)

Dependence of inductive resistance on inductance and frequency

The amplitude of the current through the coil can be calculated as follows:

$$I_0=rac{U_{R0}}{R}$$

For the total resistance \mathcal{Z}_L of the coil holds:

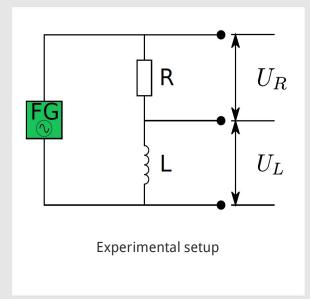
$$Z_{L}=\sqrt{R_{L}^{2}+X_{L}^{2}}=rac{U_{L0}}{I_{0}}$$

Finally, the inductive resistance can be calculated with this:

$$X_L = \sqrt{Z_L^2 - R_l^2}$$

Equipment

Position	Material	Item No.	Quantity
1	Plug-in board, for 4 mm plugs	06033-00	1
2	Coil, 1200 turns	06515-01	1
3	Resistor 10 Ohm, 1W, G1	39104-01	1
4	PHYWE Digital Function Generator, USB	13654-99	1
5	Digital storage oscilloscope with USB, 100 MHz / 2CH, 1GS/s	EAK-P-1404	1
6	Connecting cord,19A,50cm, blue	07314-04	2
7	Connecting cord, 32 A, 500 mm, red	07361-01	2
8	Measuring cable BNC to 4 mm banana plug, length 1 m	EAK-MKS-1	2
9	brigde plug	06027-07	4
10	Coil, 400 turns	07829-01	1
11	Coil, 600 turns	06514-01	1

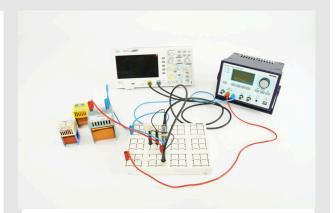


PHYWE

Setup and procedure

Setup PHYWE

- Set up the experiment according to the circuit diagram with
 - $\circ~$ the resistor $(R=10\Omega)$ and
 - \circ the coil ($L = 35mH, R_L = 12\Omega, N = 1200$).
- $\circ~$ The voltage curve U_R of the measuring resistor is measured with CH1 and the voltage curve of the coil U_L with CH2 of the oscilloscope.
- Use the autoscaling of the oscilloscope.

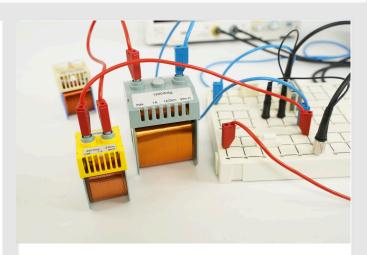

Procedure (1/3)

PHYWE

- Set a frequency of f = 500Hz at the function generator.
- \circ Select "Sine" as the waveform and set the amplitude of the input signal to $U_0=4V$.
- \circ Note: The value of the measuring resistor R is negligible compared to the inductive resistance X_L at the frequencies considered, but the ohmic resistance R_L of the coil must be taken into account.

1. Phase shift between current and voltage

observe the relative position of the voltage waveforms $U_L(t)$ and $U_R(t)$ and note your observations.


Experimental setup of a coil in a AC circuit

Procedure (2/3)

PHYWE

2. Dependence of inductive resistance on inductance

- \circ Replace the coil $(N=1200,R_L=12\Omega,L=35mH) \mbox{with the other} \mbox{two coils with } (N=600,R_L=2.5\Omega,L=9mH) \mbox{ and } (N=400,R_L=3\Omega,L=3mH) \mbox{ and generate} \mbox{ (if necessary by connecting the coils in series) the following numbers of turns: } N=400,800,1200,1600,2000,2400$
- \circ Read the voltages U_{L0} and U_{R0} on the oscilloscope and write them down in a table.

Coils in series

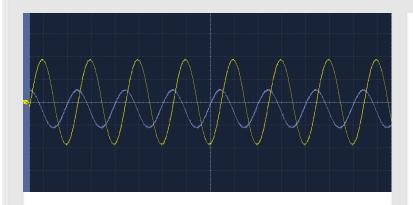
Procedure (3/3)

PHYWE

3. Dependence of the inductive resistance on the frequency

- $\circ~$ Use the coil with $N=1200\,\mathrm{and}$ the resistor $R=10\Omega\,\mathrm{as}$ measuring resistor.
- $\circ~$ Set the frequencies f=100Hz,300Hz,500Hz,800Hz,1200Hz,2000H on the function generator one after the other.
- \circ Read the amplitudes U_{L0} and U_{R0} on the oscilloscope and enter them into a table.

PHYWE


Evaluation

Evaluation (1/3)

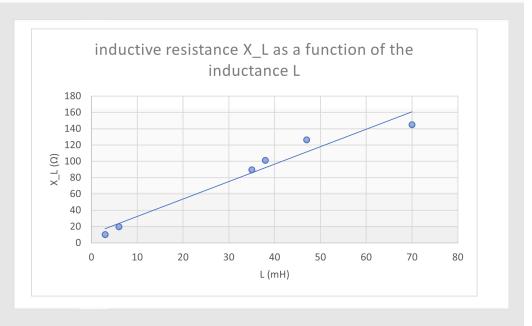
PHYWE

Coil in the AC circuit (oscilloscope image)
voltage: yellow; current: blue

Phase shift between current and voltage

It can be seen that the current signal is shifted by a quarter of a period to the left compared to the voltage signal.

The current through the coil lags the voltage at the coil in phase by 90°.

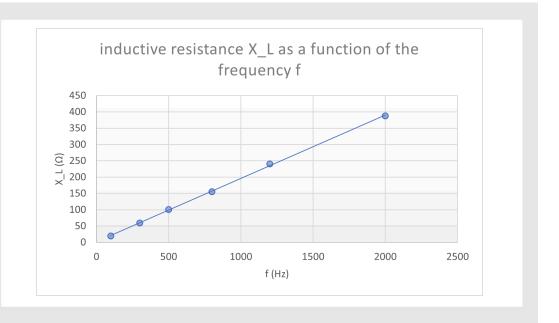

The reason for this is that every change in current induces a reverse voltage.

Evaluation (2/3)

PHYWE

If the inductive resistances X_L are plotted against the inductances, the following relationship can be seen:

The inductive resistance X_L is proportional to the inductance L. This is confirmed by equation (4).



Evaluation (3/3)

PHYWE

If the inductive resistances X_L are plotted against the frequencies f, the following relationship can be seen:

The inductive resistance X_L is proportional to the frequency f. This is confirmed by equation (4).

