К-альфа дублетное расщепление рентгеновских лучей молибдена / тонкая структура

http://localhost:1337/c/615f237d6266830003270c09

Общая информация

Описание

PHYWE

Экспериментальная установка

Большинство применений рентгеновских лучей основано на их способности проходить сквозь вещество. Поскольку эта способность зависит от плотности вещества, становится возможным получение изображений внутренних частей объектов и даже людей. Это находит широкое применение в таких областях, как медицина или безопасность.

Дополнительная информация (1/2)

Предварительные

знания

Предварительные знания, необходимые для этого эксперимента, приведены в разделе "Теория".

Принцип

Рентгеновское излучение, генерируемое рентгеновской трубкой с молибденовым анодом, выбирается в зависимости от угла Брэгга с помощью монокристалла и регистрируется трубкой- счетчиком Гейгера-Мюллера. Полученные рентгеновские линии используются для определения разделения линий дублета K_{α} , а также их соответствующих интенсивностей.

Дополнительная информация (2/2)

излучение молибдена.

PHYWE

Обучение

цель

Задачи

1. Проанализируйте интенсивность рентгеновского излучения молибдена в зависимости от угла Брэгга с помощью монокристалла LiF.

Цель этого эксперимента - исследовать характеристическое рентгеновское

2. Определите длины волн и интенсивности линий K_{α_1} и K_{α_2} и сравните полученные значения с теоретическими.

www.phywe.de

Теория (1/3)

На рисунке 1 показана диаграмма уровней энергии молибдена (Z = 42).

Когда электрон удаляется из К-оболочки атома, образовавшаяся дырка заполняется электроном из более высокой оболочки. Разность энергий энергетических уровней, участвующих в этом процессе, может быть преобразована в рентгеновское излучение. Когда s-электрон пропадает из К-оболочки, образуется ${}^2S_{1/2}$. То же самое относится и к оболочке L_1 . Отсутствие p-электрона на оболочке L_2 или L_3 приводит к термам ${}^2P_{1/2-3/2}$ или ${}^2P_{3/2}$. Поскольку квантово-механические правила отбора допускают только излучательные переходы, $\Delta l = \pm 1$ переход $L_1 \rightarrow K$ не допускают только две линии K_{α_1} и K_{α_2} . Поскольку условия ${}^2P_{1/2}$ и ${}^2P_{3/2}$ четырехкратно и двукратно вырождены, интенсивности линий K_{α_1} и K_{α_2} имеют соотношение 4: 2.

PHYWE

PHYWE

Рис. 1: Энергетическая диаграмма молибдена (Z = 42)

Теория (2/3)

Когда рентгеновские лучи с длиной волны λ падают на плоскости решетки монокристалла под углом скольжения θ, то отраженные лучи от плоскостей решетки конструктивно интерферируют друг с другом при условии, что их разность хода соответствует целому кратному длин волн. Эта условие объясняется законом Брэгга:

 $2d\sin(\theta) = n\lambda$ (1)

(d: межплоскостное расстояние; n = 1, 2, 3, ...)

Рис. 2: Брэгговское рассеяние на паре плоскостей решетки

www.phywe.de

Теория (3/3)

Если известно межплоскостное расстояние d, то с помощью угла скольжения θ можно определить длину волны λ . Энергия излучения возникает в результате:

$$E = h \cdot f = rac{hc}{\lambda}$$
 (2)

Примечание:

Данные диаграммы уровней энергии были взяты из «Справочника по химии и физике», CRC Press Inc., Флорида. Постоянная Планка h = 6,6256 ·10⁻³⁴Джс

Скорость света с = 2,9979 $\cdot 10^8 \frac{M}{2}$

Межплоскостное расстояние LiF (200) d = 2,014 $\cdot 10^{-10}$ м

Межплоскостное расстояние KBr (200) d = 3.290 $\cdot 10^{-10}{}_{\rm M}$

Эквивалент 1 эВ = 1,6021 ·10⁻¹⁹Дж

www.phywe.de

Оборудование

Позиция	Материал	Пункт No.	Количество
1	XR 4.0 X-ray Базовая рентгеновская установка, 35 кВ	09057-99	1
2	XR 4.0 X-ray Гониометр для рентгеновской установки, 35 кВ	09057-10	1
3	XR4 Съёмная рентгеновская трубка Plug-in Mo tube	09057-61	1
4	XR 4.0 X-ray Рентгеновские характеристики, расширение	09135-88	1

Подготовка и выполнение работы

Подготовка

Подключите гониометр и счетчик Гейгера-Мюллера к соответствующим гнездам в экспериментальной камере (см. красная маркировка на рис. 3). Блок гониометра с кристаллом анализатора должен располагаться в крайнем положении с правой стороны. Закрепите трубку счетчика Гейгера-Мюллера с держателем на заднем упоре направляющих. Не забудьте установить перед счетчиком диафрагму (см. рис. 4). Вставьте диафрагменную трубку диаметром 1 мм в выходное отверстие блока подключения трубки.

Для калибровки: Убедитесь, что в параметры гониометра введен правильный кристалл. Затем выберите "Меню", "Гониометр", "Автокалибровка". Теперь прибор определит оптимальные положения кристалла и гониометра относительно друг друга, а затем и положения пиков.

PHYWE

←Рис. 3:

Разъемы в

экспериментальной

камере

↓Рис. 4:

Установка

0

00

0

ee

(

0 0

USB 2.0

PHYWE

Выполнение работы (1/3)

PHYWE

- Подключите рентгеновскую установку через USB-кабель к USBпорту компьютера (нужный порт рентгеновской установки отмечен на рисунке 5).
- Запустите программу measure. На экране появится виртуальная рентгеновская установка.
- Вы можете управлять рентгеновской установкой, нажимая на различные функции на виртуальной рентгеновской установке и под ней. Кроме того, Вы можете изменить параметры на самой рентгеновской установке. Программа автоматически примет настройки.

Рис. 5: Подключение компьютера

Выполнение работы(2/3)

	РИС. 6:
l	Часть
ľ	интерфейса
	ПО

R4.0×ray 0	ioniometer		Instruction manual
Order No 09057-10		www.phywe.com	
evice adjustm	erits		
fode	1.2 coupling mode	Detector angle	8.0 *
Crystal	LF (100): d=201,4 pm	Crystal start angle	4.0
Absorber	No absorber	Crystal stop angle	65.0 *
		Crystal increment	0,1 *
	Calibrate	Integration ime	2,0 • •
OK.	1	Cancel	Help

гониометра (кристалл LiF)

- Нажмите на экспериментальную камеру (см. красную маркировку на рис. 6), чтобы изменить параметры эксперимента. Выберите параметры, как показано на рис. 7, для кристалла LiF.
- Если Вы нажмете на рентгеновскую трубку (см. красную маркировку на рис. 6), можно изменить напряжение и ток рентгеновской трубки. Выберите параметры, как показано на рис. 8.
- \circ Если Вы измеряете сечение линий K_{α_1} и K_{α_2} , выберите следующий диапазон сканирования: 44° - 46° (n = 4) и 61° - 63° (n = 5) и время стробирования 30 - 60 с.

XR4.0 X-ray Plug-in W tube	Instruction manual
Order number 09057-80	www.phywe.com
ube adjustments	
ube voltage	35,0 × kV
mission current	1.0 • mA

Рис. 8: Настройки напряжения и силы тока

Выполнение работы (3/3) РНУ				
	Environment Microsoft			
• Начните измерение, нажав на красный круг:				
 После измерения появится следующее окно: С clear all values С Keep current processed values ОК 				
 Выберите первый пункт и подтвердите выбор нажатием 	Обзор настроек гониометра и рентгеновской установки:			
кнопки ОК. Теперь измеренные значения будут переданы	 ∘ Режим сопряжения 1:2 			
непосредственно в программу	∘ Время выхода 30 - 60 с; ширина углового шага 0,1°			
	 Диапазон сканирования 44° - 64° и 61° - 63° (монокристалл ціс) 			
 в конце данного руководства вы найдете краткое введение в оценку полученных спектров. 	$\circ~$ Анодное напряжение $\rm U_A$ = 35 кВ; анодный ток $\rm I_A$ = 1 мА			

Задание 1

PHYWE

Задание 1: Проанализируйте интенсивность рентгеновского излучения молибдена в зависимости от угла Брэгга с помощью монокристалла LiF.

На рисунке 9 показан рентгеновский спектр молибдена, который был проанализирован с помощью монокристалла LiF. С помощью закона Брэгга (1) длины волн характеристических линий могут быть определены на основе их углов скольжения θ.

Рис. 9: Рентгеновский спектр молибдена; монокристалл LiF в качестве анализатора

Задание 1 (часть 2)

В таблице 1 показаны значения углов скольжения θ которые были определены из рис. 9, а также значения длин волн λ характеристической рентгеновской линии молибдена, рассчитанные с помощью уравнения (1).

Для сравнения, в таблице 2 показаны значения λ , вычисленные с помощью уравнения (2) и основанные на значениях энергии, показанных на рис. 1. На рис. 9 расщепление дублета K_{α} становится почти видимым при интерференции четвертого порядка (n = 4). Анализ рентгеновского спектра см. также Р2540205.

	$\vartheta(K_a)/^{\circ}$	$\vartheta(K_{\beta})/^{\circ}$	$\lambda(K_a)/pm$	$\lambda(K_{\beta})/pm$
n=1	10.4	9.2	71.3	63.7
n=2	20.9	18.5	71.2	63.2
n=3	32.2	28.4	71.2	63.4
n=4	45.1	-	71.2	-
			71.22	63.43

Таблица 1: Длины волн линий K_{α} и K_{β} , рассчитанные с помощью экспериментальных значений

$\lambda(K_{\alpha l})/pm$	$\lambda(K_{\alpha 2})/pm$	$\lambda(K_{eta})/pm$
71.36	70.93	63.29

Таблица 2: Длины волн линий K_α и K_β , вычисленные с помощью значений энергии (см. рис. 1)

10/12

PHYWE

Задание 2

PHYWE

Задание 2: Определите длины волн и интенсивности линий K_{α_1} и K_{α_2} и сравните полученные значения с теоретическими.

На рис.10 и 11 показаны некоторые участки рентгеновского спектра молибдена. Хорошо видно расщепление K линий. Соответствующие значения приведены в таблице 3. Длина волны была определена с помощью уравнения (1).

В первом приближении интенсивность рентгеновской линии определяется ее максимумом. В результате на рис. 10 и 11 отношение интенсивностей составляет $I(K_{\alpha_1})/I(K_{\alpha_2}) \approx 1.8$.

Рис. 10: Расщепление линий молибдена K_{α_1} и K_{α_2} (n = 4)

Задание 2 (часть 2) **PHYWE** 9 θ Среднее значение n = 4 n = 5 1 $K_{\alpha l}$ 44.8 61.8 70.84 30 K_{a2} 45.1 62.45 71.22 25 20 62.6 62.8 63 <u>- 0_c</u> 62.2 61.2 61.4 61,6 61,8 62 62.4 Таблица 3 Рис. 11: Расщепление линий молибдена K_{α_1} и K_{α_2} (n = 5)

PHYWE

Примечание

Программное обеспечение measure С помощью программного обеспечения measure пики в спектре могут быть определены довольно легко:

- Нажмите на кнопку "Анализ пика". 🕍
- Появится окно "Анализ пиков" (см. рис. 11). Затем нажмите "Рассчитать".
- Если вычислены не все пики (или их слишком много), скорректируйте допустимую погрешность.
- Выберите "Визуализация результатов", чтобы отобразить данные пиков непосредственно в спектре.

Рис. 12: Автоматический анализ пиков с помощью measure .

PHYWE

12/12

PHYWE