curricuLAB[®] PHYWE

Conversion of electrical energy into kinetic energy

Physics	Energy	Energy forms	s, conversion & conservation
Difficulty level	RR Group size	C Preparation time	Execution time
easy	1	10 minutes	10 minutes
This content can also be found online at:	e Vie		

http://localhost:1337/c/6167de062d1cf30003518beb

Teacher information

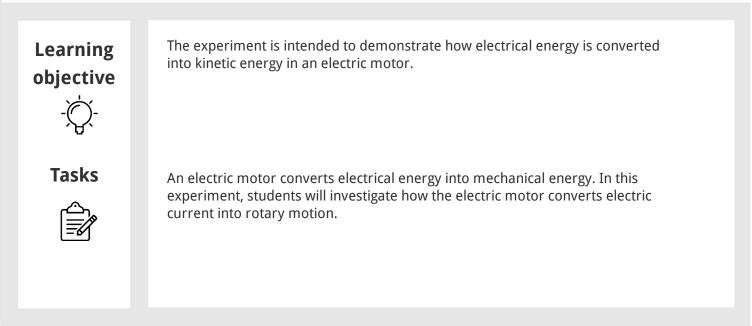
Application

PHYWE

Charging process of a motor vehicle driven by an electric motor

Electric motors are capable of converting electrical energy into kinetic energy and are therefore used in many areas of technology.

Electric motors usually consist of a rotor (the drive shaft) and a stator (a fixed body). The rotor is often equipped with one or more coils. The stator is usually a permanent magnet.


If these coils are energized, an electromagnetic field is created which generates a moment at the stator due to repulsion or attraction forces (Lorentz force), so that the drive shaft of the motor is set in rotation.

Other tea	cher information (1/2) РНУ	WE
Previous knowledge	The students should already have a sound basic knowledge of the physical quantities such as current, voltage, force and torque in order to be able to complete the experiments regarding the electric motor. In addition, they should already have knowledge about the magnetic fields of permanent and electromagnets.	
Scientific principle	Electric motors are often made up of several so-called conductor coils. If these are energised, a magnetic field is generated which causes the drive shaft to rotate due to attractive and repulsive forces. Thus, the electric motor serves as a converter of electrical energy into mechanical energy. The force acting through a magnetic field is also referred to as the Lorentz force.	

Other teacher information (2/2)

PHYWE

3/11

PHYWE

Safety instructions Image: Safety instructions for safe experimentation in science lessons apply to this experiment. Image: Safety instructions for safe experimentation in science lessons apply to this experiment. Image: Safety instruction for safe experimentation in science lessons apply to this experiment. Image: Safety instruction for safe experimentation in science lessons apply to this experiment. Image: Safety instruction for safe experimentation in science lessons apply to this experiment. Image: Safety instruction for safe experimentation in science lessons apply to this experiment. Image: Safety instruction for safe experimentation in science lessons apply to this experiment. Image: Safety instruction for safety

Student Information

Robert-Bosch-Breite 10 37079 Göttingen Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Motivation

PHYWE

Charging process of a motor vehicle driven by an electric motor

Electric motors are very important drive components in all areas of technology. Whether in rail vehicle technology, energy generation or now also in the vehicle industry. They are used to convert electrical energy (current) into mechanical energy (motion).

An example of this that is now very well known is electric vehicles, which can be seen more and more on the roads. The illustration shows an electrically powered car whose batteries are being recharged.

The batteries store the electricity that runs the car's electric motors.

Tasks

PHYWE

In an electric motor, electrical energy is converted into mechanical energy.

In this experiment, you will investigate how motion is created from electricity.

Equipment

Position	Material	Item No.	Quantity
1	Student set Electric motor / Generator, TESS advanced Physics	15221-88	1
2	PHYWE Power supply, 230 V, DC: 012 V, 2 A / AC: 6 V, 12 V, 5 A	13506-93	1

www.phywe.de

Set-up

PHYWE

Experimental setup of the schematically reproduced electric motor

Set up the experiment as shown in the figure opposite.


Make sure that the coil can move freely between the pole pieces. A DC voltage of 4...4,5V created

(Attention! Use red sockets of the coil!).

The coil must be vertical and the current is switched off.

Procedure

PHYWE

Experimental setup of the schematically reproduced electric motor

Experiment 1:

• Turn the power on. What do you observe? Write down your observations in the protocol.

Experiment 2:

- Interrupt the current and reverse the current supply at the DC voltage source. Place the coil vertically again. Make sure that the same half of the coil is at the top as in the first measurement.
- Turn the power back on. Observe carefully if anything changes and if so, what?

Task 1

PHYWE

Experimental setup of the schematically reproduced electric motor

What was your observation during the 1st experiment?

- O The coil has moved 90° rotated to the horizontal position.
- O The coil did not move during the test.
- O The coil has moved 180° turned.

Check

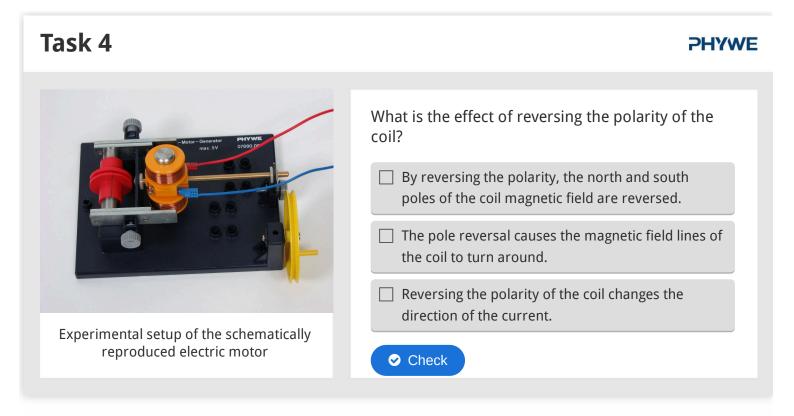
- -

Task 2

PHYWE

Experimental setup of the schematically reproduced electric motor

what was your observation experiment?	n during the 2nd					
The	has again moved to the					
horizontal	. In this experiment,					
however, in the opposite						
compared to the 1st experime	ent. The					
did not move.						
coil position direction	on permanent magnet					
Check						


Task 3

PHYWE

When a	is passed through the		, it has a			north/south pole
	, just like a		. Since lik	ke poles		south pole
	and unlike poles		each other, the coil		current	
aligns itself so that the		of the coil is close to the south pole of the			magnet	
pole-shoe magnet. The	same is true for the			of the coil	and the	repel
north pole of the pole-s	shoe magnet.					attract
						coil
					(north pole

. . . .

Task 5

PHYWE

The coil has moved during the test only by 90° rotated. Think about how you can achieve a full rotation of the coil. Drag the words into the correct boxes!

To achieve a full rotation	n, you	must reverse th	e polarity of the		at the	south pole
moment it has rotated	to the		position. The so	outh pole of the	coil then	horizontal
becomes a	а	and the north po	le becomes a		This will then	north pole
cause	poles	to be next to eac	ch other. The	١	will then	coil
continue to turn half a		until		poles are adja	cent again. This	opposite
can be repeated as ofte	en as de	esired.				
						turn
						rotor
						equal

10/11

Slide					Score / Total
Slide 13: Observation: Experiment 1					0/1
Slide 14: Observation: Experiment 2					0/4
Slide 15: Conclusion					0/8
Slide 16: Conclusion 2					0/3
Slide 17: Conclusion 3					0/8
				Total	0/24
	 Solution 	s C	Repeat		

info@phywe.de www.phywe.de