

# The power generating generator



Physics

Electricity &amp; Magnetism

Electric generator, motor, transformer



Difficulty level

easy



Group size

1



Preparation time

10 minutes



Execution time

10 minutes

This content can also be found online at:

<http://localhost:1337/c/617aab478e47ed0003a82b30>



## Teacher information

### Application



Wind turbine with electricity generating generator

With the knowledge of Faraday's law of induction, it is possible to convert mechanical energy into electrical energy. Nowadays, this phenomenon is mainly used in generators that convert natural kinetic energy into electricity.

Typical examples of applications are turbines in hydroelectric power plants at dams or wind turbines. These use the movement of flowing air masses to drive a rotor, which is coupled to a generator with the aid of a gearbox. When this generator is set in rotation, it converts the rotational kinetic energy into an electric current.

## Other teacher information (1/2)

PHYWE

### Previous



Students should already have worked out and understood the basics of electromagnetic induction in order to understand how the principle of induction can be used for everyday technical applications.

### Principle



The operation of the generator is based on the principle of electromagnetic induction. This means that a permanent magnet moving past an electromagnet causes a change in the magnetic flux and thus the generation of an electric current. In the generator, the principle is generated by the continuous rotary motion.

## Other teacher information (2/2)

PHYWE

### Learning



The experiment is designed to show the students the principle of an electricity-generating generator by means of three examples.

### Tasks



In this experiment, the students are to construct and investigate the classic (bicycle) dynamo. To this end, they are to construct three different designs of this type of generator and determine their properties.

## Safety instructions



**PHYWE**

The general instructions for safe experimentation in science lessons apply to this experiment.



## Student Information

## Motivation

PHYWE



Wind turbine with electricity generating generator

You have already studied the phenomenon of electromagnetic induction in detail. Now, however, you are to examine the extent to which this can also be used for everyday applications.

You have generated a small electric current with the help of a rotating permanent magnet and a stationary electromagnet. But is it also possible to generate larger currents with the help of the experimental setup and feed them into the power grid?

Classic examples of the generation of electricity from kinetic energy (in this case rotation) are wind turbines, which convert wind energy into electricity.

## Tasks

PHYWE



You know that you can generate a current, for example, with the help of a moving magnet. In this experiment, you will find out whether this process can also be used for everyday applications. In addition, you will learn which different designs are conceivable for generating electricity.

For this purpose you will build and examine three different designs of the so-called dynamo.

## Equipment

| Position | Material                                                                         | Item No. | Quantity |
|----------|----------------------------------------------------------------------------------|----------|----------|
| 1        | Student set Electric motor / Generator, TESS advanced Physics                    | 15221-88 | 1        |
| 2        | Digital multimeter, 600V AC/DC, 10A AC/DC, 20 MΩ, 200 µF, 20 kHz, -20°C... 760°C | 07122-00 | 1        |
| 3        | Connecting cord, 15A, 25cm, red                                                  | 07313-01 | 1        |
| 4        | Connecting cord, 15A, 25cm, blue                                                 | 07313-04 | 1        |
| 5        | Filament lamps 1.5V/0.15A, E10, 10 pieces                                        | 06150-03 | 1        |
| 6        | Junction module, SB                                                              | 05601-10 | 2        |
| 7        | Socket module for incandescent lamp E10, SB                                      | 05604-00 | 1        |

## Structure & Implementation (1/2)

PHYWE



Experimental setup: Generator 1

### Experiment: Part 1

- Build the first generator as shown in the picture.
- The measuring instrument should be set so that it can measure AC voltages in the range up to  $\pm 2 \text{ V}$  or alternating current up to  $\pm 0,2 \text{ A}$  measures.
- Connect the drive shaft and the yellow crank wheel using the rubber belt.
- Set the drive wheel and thus also the shaft in rotation with the help of the lever. Observe the display of the multimeter.

## Structure & Implementation (2/2)

PHYWE



Generator 2



Generator 3

### Experiment: Part 2 & 3

- Now build the other two generators one after the other.
- Consider beforehand whether the generator produces AC or DC voltage and set the measuring device accordingly.
- Note: You can use a bulb socket with a bulb  $1,5 \text{ V} ; 0,15 \text{ A}$  to the connecting lines and thus make them light up.
- Rotate the generators again and observe the reading of the multimeter.

PHYWE



# Report

## Task 1

PHYWE



Experimental setup: Generator 1

Which statements are true for your observations in the 1st part of the experiment?

- The multimeter shows virtually no deflection.
- It is alternating current/voltage.
- The multimeter shows a clear deflection.
- It is direct current/voltage.

**Check**

## Task 2

PHYWE



Experimental setup: Generator 2

Which statements are true for your observations in the 2nd part of the experiment?

- The multimeter shows virtually no deflection.
- The multimeter shows a clear deflection.
- It is direct current/voltage.
- It is alternating current/voltage.

**Check**

## Task 3

PHYWE



Experimental setup: Generator 3

Which statements are true for your observations in the 3rd part of the experiment?

- The multimeter shows a clear deflection.
- It is direct current/voltage.
- The multimeter shows virtually no deflection.
- It is alternating current/voltage.

**Check**

## Task 4

Explain how the generators work. Also explain the process of electromagnetic induction.

The coil is in the magnetic field of the [ ] . When the bar magnet or [ ] is made to rotate, the [ ] flowing through it changes constantly. The changing magnetic field induces a [ ] in the coil, which can be measured using the [ ] . The faster the rotation, the stronger the [ ] and thus the [ ] . So the principle of the Generator works in reverse to that of the [ ] .

- permanent magnet
- voltage
- magnetic field change
- magnetic field
- multimeter
- coil
- electric motor
- induction

 Check

Slide

Score / Total

Slide 13: Observation 1

0/2

Slide 14: Observation 2

0/2

Slide 15: Observation 3

0/2

Slide 16: Operation of the generator

0/8

Total

0/14

 Solutions

 Repeat

10/10