

Трансформатор с Cobra SMARTsense

Физика	Электричество и м	агнетизм Электрог	Электромагнетизм и индукция	
Г Уровень сложности	ДД Кол-во учеников	Б Время подготовки	<u></u> Время выполнения	
лёгкий	2	10 Минут	10 Минут	

This content can also be found online at:

http://localhost:1337/c/615881c80f4f6b000313e8d0

Tel.: 0551 604 - 0

Fax: 0551 604 - 107

PHYWE

Информация для учителей

Описание PHYWE

Трансформаторы на трансформаторной подстанции

Трансформатор используется в различных областях электротехники. Например, в энергетике или при повседневном использовании бытовых электроприборов.

В энергетике трансформаторы соединяют различные уровни напряжения электросети. Для высоковольтных сетей они составляют до 380 кВ, для сетей среднего напряжения - около 10 ... 36 кВ или чуть ниже 400 В для использования в быту (низковольтные сети).

В электроприборах встроенные трансформаторы преобразуют входное напряжение еще ниже, если, например, устройство не может работать с напряжением сети 230 В.

Дополнительная информация (1/2)

PHYWE

Предварительные

знания

Принцип

Учащиеся должны уже изучить и понять принцип индукции. Кроме того, во время проведения этого эксперимента будут полезны базовые знания о электродвигателе/генераторе.

Трансформаторы состоят из двух или более катушек на общем железном сердечнике. С его помощью входное переменное напряжение U_1 может быть преобразовано в выходное переменное напряжение U_2 . Соотношение между входным и выходным напряжением соответствует отношению количества витков входной и выходной катушек (N_1 и N_2).

$$\frac{U_1}{U_2} = \frac{N_1}{N_2}$$

Дополнительная информация (2/2)

PHYWE

Цель

Этот эксперимент призван продемонстрировать принцип работы и одно из преимуществ трансформатора.

Задачи

В этом эксперименте ученики должны построить трансформатор из двух катушек, соединенных с помощью железного сердечника и исследовать свойства этого трансформатора.

Инструкции по технике безопасности

PHYWE

К этому эксперименту применяются общие инструкции по безопасному проведению экспериментов при преподавании естественных наук.

Внимание!

Максимальное напряжение 12 В может подаваться на катушку не более **2 минут,** так как в противном случае существует риск перегрева. В случае перегрева, подождите, пока катушка снова не остынет.

Подсказка:

Для первой части эксперимента необходимо достаточно «сглаженное» постоянное напряжение. Если такой возможности нет, то для выполнения эксперимента используется плоская батарея 4,5 В

Информация для учеников

Мотивация **PHYWE**

Трансформаторы на трансформаторной подстанции

Как известно, обычные розетки в Германии имеют переменное напряжение около 230 В. Тем не менее для того, чтобы электроэнергия могла транспортироваться от электростанций к домохозяйствам с минимальными потерями, необходимо использовать высокое напряжение до 380.000 В.

Но как снизить напряжение с 380 000 В до 230 В? Для этого обычно используются трансформаторы.

А каков принцип действия такого трансформатора? С этим вопросом Вы разберетесь в данном эксперименте.

Задачи **PHYWE**

Вы уже познакомились с принципом электромагнитной индукции и рассмотрели его более подробно. Исходя из этого, в этом эксперименте Вам предстоит выполнить следующие этапы:

- 1. Постройте простой трансформатор и изучите его основные свойства.
- 2. Измените модель трансформатора и выясните, для чего может быть использован данный трансформатор.

Tel.: 0551 604 - 0

Оборудование

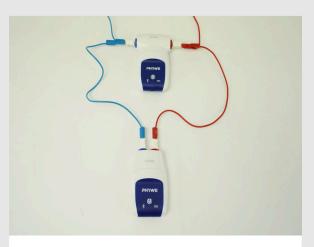
Позиция	Материал	Пункт No.	Количество
1	РНҮWE Источник питания пост. ток: 012 B, 2 A / перемен. ток: 6 B, 12 B, 5 A	13506-93	1
2	TESS Физика "Электромотор / Генератор", расширенный набор	15221-88	1
3	Cobra SMARTsense - Сила тока, ± 1 A (Bluetooth + USB)	12902-01	1
4	Cobra SMARTsense - Напряжение, ± 30 V (Bluetooth + USB)	12901-01	1
5	measureAPP - бесплатное измерительное программное обеспечение всех пр	14581-61	1

Подготовка (1/3)

PHYWE

Для измерения с помощью **Датчики Cobra SMARTsense** сайт **PHYWE measureAPP** требуется. Приложение можно бесплатно загрузить из соответствующего магазина приложений (QR-коды см. ниже). Перед запуском приложения убедитесь, что на вашем устройстве (смартфон, планшет, настольный ПК) **Bluetooth** активирован .

ins


Android

Windows

Подготовка (2/3)

PHYWE

Датчик-Сила тока и Датчик-Напряжение подключены параллельно

Примечание: Чтобы во время эксперимента одновременно измерять силу тока и напряжение необходимо подключить датчик-Напряжение параллельно к датчику-Сила тока.

Включите датчик (и), нажав и удерживая кнопку ввода/ вывода в течение примерно трех секунд. Запустите приложение measureAPP и выберите датчик (и) для их подключения.

Подготовка (3/3)

PHYWE

Электромагнит (катушка), подключенный к источнику напряжения

ВНИМАНИЕ!

Максимальное напряжение 12 В может подаваться на катушку не более **2 минут,** так как в противном случае существует риск перегрева. В случае перегрева, подождите, пока катушка снова не остынет.

- Подключите катушку электромагнита к источнику напряжения, как показано на рисунке.
- Используйте только красные разъемы катушки.

Выполнение работы (1/4)

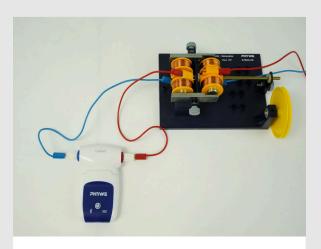
Экспериментальная установка 1: простой трансформатор

Эксперимент 1: часть 1

- Выясните, может ли магнитное поле электромагнита индуцировать напряжение.
- Соберите экспериментальную установку, как показано на рисунке.
- Обе катушки содержат железный сердечник. Подайте на первую катушку постоянное напряжение 5 В и начните быстро перемещать ее вперед и назад. Что Вы наблюдаете?
- Что происходит, когда две катушки находятся в состоянии покоя? Завершите измерение и при необходимости сохраните его.

Выполнение работы (2/4)

PHYWE


простой трансформатор

Эксперимент 1: часть 2

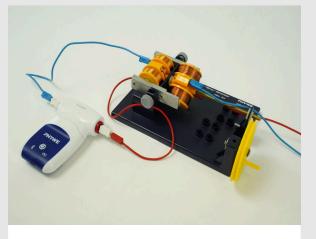
- Теперь поместите катушки, как показано на рисунке, и вставьте железный сердечник в обе катушки.
- Что Вы будете наблюдать, если теперь на первую катушку подается переменное напряжение около 6 В? (не более 2 минут!)

Выполнение работы (3/4)

PHYWE

Экспериментальная установка 2: расширенный трансформатор

Эксперимент 2: часть 1


- Исследуйте теперь свойства так называемого трансформатора.
- Соберите экспериментальную установку, как показано на рисунке. Железные сердечники двух катушек собираются через полюсные наконечники и образуют так называемый тороидальный сердечник.
- Соединительные провода обеих катушек изначально подключаются к красным разъемам катушки (полное количество витков). На первую катушку подается переменное напряжение 6 В.
- Начните измерение. Каковы показания силы тока/ напряжения?

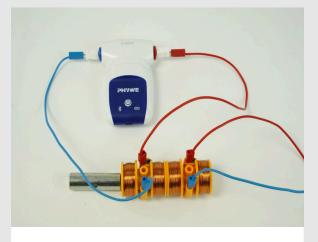
Выполнение работы (4/4)

PHYWE

Экспериментальная установка 2: расширенный трансформатор

Эксперимент 2: часть 2 и 3

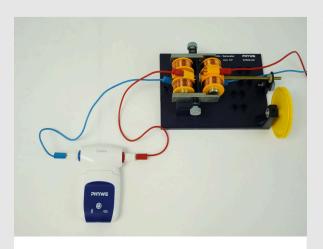
- Теперь уменьшите вдвое количество витков катушки, подключенной непосредственно к источнику питания (подключение к **синему** разъему). Какие изменения в измеренных значениях?
- Теперь возьмите полное количество витков (красный разъем) для катушки, подключенной к источнику питания, и половину количества витков (синий разъем) для другой.
- Начните еще одно измерение. Какие значения силы тока/напряжения в этом случае?


PHYWE

Протокол

Задание 1 PHYWE

Экспериментальная установка 1: простой трансформатор


Что Вы наблюдали во время 1-й части эксперимента 1 (в движении)?

При перемещении одной катушки measureAPP показывает небольшое отклонение измерений.

При перемещении одной катушки measureAPP не показывает отклонения измерений.

Задание 2

Экспериментальная установка 2: расширенный трансформатор

Что Вы наблюдали во время первой части эксперимента 2?

MeasureAPP показывает приблизительное значение 6-12 В

MeasureAPP показывает приблизительное значение 3-6 В.

MeasureAPP не отображает измеренное значение (такое как 0 B).

Задание 3

Катушки трансформатора называются первичной и вторичной катушками. Подумайте, у какой катушки какое название.

Катушка, подключенная к источнику напряжения, является , а катушка,

подключенная к измерительному устройству -

вторичной катушкой

первичной катушкой

Проверьте

Задание 4

Экспериментальная установка 1: простой трансформатор

Подумайте, какая формула отражает принцип работы трансформатора.

Tel.: 0551 604 - 0

Fax: 0551 604 - 107

$$\frac{U_2}{U_1} = \frac{N_2}{N_1}$$

$$\frac{U_2}{U_1} = \frac{N_1}{N_2}$$

$$rac{U_2}{U_1}=rac{1}{2}\cdot N_1$$

Задание 5 Подумайте, для чего можно использовать трансформатор. □ Для хранения электрического заряда, например, как аккумулятор. □ Для преобразования напряжения от розетки для зарядки мобильного телефона. □ Для преобразования напряжения между так называемыми уровнями сети. Например, от высоковольтной сети к сети среднего напряжения.

Слайд	Оценка/Всего
Слайд 18: Наблюдение: Эксперимент 1	0/3
Слайд 19: Наблюдение: Эксперимент 2	0/3
Слайд 20: Обозначения катушек	0/2
Слайд 21: Уравнение трансформатора	0/1
Слайд 22: Примеры применения	0/2
	Bcero 0/11
Решения	Повторите

