P6301269

curricuLAB[®] PHYWE

Induced voltage and magnetic flux density with Cobra SMARTsense

https://www.curriculab.de/c/67b448a9b9a8b10002bcc476

Teacher Information

Application

PHYWE

Electromagnetic induction describes the generation of an electric voltage when the magnetic flux through a coil changes. This induced voltage can be measured directly and detected as an electric field.

A practical example is the bicycle dynamo: here, the rotation of the wheel moves a magnet past a coil. The changing magnetic field induces a voltage, which supplies the bicycle lamp with energy.

www.phywe.de

Other teacher information (2/2)

PHYWE

Safety instructions

PHYWE

The general instructions for safe experimentation in science lessons apply to this experiment.

Student Information

Motivation

PHYWE

Bicycle light powered by electromagnetic induction

Have you ever wondered why your bike light turns on as soon as you start riding—without a battery or a switch? The answer lies in electromagnetic induction: movement changes a magnetic field, inducing a voltage in the coil.

This principle is not only used in bicycle dynamos but everywhere electricity is generated through motion. In this experiment, you will explore how changes in the magnetic field generate electrical energy and what role the direction and speed of movement play.

Tasks

PHYWE

- 1. Set up the experiment according to the specifications.
- 2. Movement of the magnet with simultaneous detection of magnetic flux density and induced voltage.
- 3. Derivation of the relationships between the detected variables.

Equipment

Position	Material	Item No.	Quantity
1	Plug-in board, for 4 mm plugs	06033-00	1
2	Connecting cord,19 A,25cm, blue	07313-04	1
3	Connecting cord,19 A,25cm, red	07313-01	1
4	Coil, 1600 turns	07830-01	1
5	Magnet, d=8 mm, l=60 mm	06317-00	1
6	Cobra SMARTsense Voltage - Sensor for measuring electrical voltage ± 30 V (Bluetooth + USB)	12901-01	1
7	Cobra SMARTsense 3-Axis Magnetic field - Sensor for measuring the magnetic field in 3 axes \pm 130mT / \pm 5 mT (Bluetooth + USB)	12947-00	1
8	measureAPP - the free measurement software for all devices and operating systems	14581-61	1

Structure (1/2)

PHYWE

PHYWE

For measurements with the **Cobra SMARTsense sensors** the **PHYWE measureAPP** is required. The app can be downloaded free of charge from the relevant app store (see below for QR codes). Before starting the app, please check, that **Bluetooth** is **activated** on your device (smartphone, tablet, desktop PC).

Structure (2/2)

• Set up the experiment as shown in the figure on the right.

• Use a coil with the following specifications

$$\circ N = 1600$$

Experimental setup

info@phywe.de

www.phywe.de

Procedure (1/2)

PHYWE

PHYWE

- Switch on the Cobra SMARTsense Voltage and Cobra SMARTsense magnetic field sensors by pressing and holding the button on both sensors for approx. 3 seconds.
- Make sure that your end device can connect to Bluetooth.
- Open the PHYWE measureAPP and select the sensors "Voltage" and "Magnetic Field".

Procedure (2/2)

Messkanal Current I [mA] ැබු 3-Axis Magnetic Field Bx [mT] {ô} ന දු 🔿 By [mT] ស្រ තු 🔿 Bz [mT] Berechnete Kanäle Ð Konfiguration Abtastfrequenz 500 Hz Gleitender Mittelwert

After you have connected the Cobra SMARTsense Magnetic Field Sensor, apply the following settings in the measureAPP:

- After the connection, select the fine measuring range (-5 mT... + 5 mT) for the sensor.
- $\circ\,$ Select only the longitudinal direction under Measuring channel B_x of the sensor, so that only the magnetic flux density in the direction of the longitudinal axis of the sensor is measured.
- Select the sampling frequency for the sensors under Configuration. The higher this is, the more accurate the measurements will be.

PHYWE

Procedure (3/3)

PHYWE

Carry out the next steps in the measureAPP:

 Go to the "Configuration" area and click on the "Set to zero" button. Select both the current and the flux density.

Finally, change the X-axis by pressing the cogwheel next to the X-axis.

- \circ Choose the current I.
- $\circ\,$ The Y-axis should adjust itself automatically and should reflect the magnetic flux density B.

Realisation (4/3)

PHYWE

Start a measurement.

Move the magnet in different patterns in front of or inside the coil. Do not make the movements too quickly and save your measurements for comparison in between.

Here are some examples of what you can do. Enter your observations in the log area:

- 1. Move the magnet into the coil with the north pole first, wait briefly and move the magnet back again
- 2. Repeat the process with the south pole side.
- 3. Move the magnet faster in and out of the coil.
- 4. Let the magnet rest in the coil.
- 5. Rotate the magnet in the coil around the longitudinal axis.

Evaluation (1/2)

PHYWE

Movement	Observation	Movement	Observation
North pole into coil		Faster movement of the magnet	
North pole out of coil		Magnet rests in the coil	
South pole into coil		Rotation of the magnet around the longitudinal	
South pole out of coil		(In the section "Evaluation (2 the movements you have de corresponding observations	vised and the

Movement Observation Movement Observation Image: Imag

Task 1

How is the rate of change of the magnetic flux density related to the induced voltage?

 $U_{ind}(t) = dB(t)/dt$

 $U_{ind}(t) \sim (dB(t)/dt)^2$

 $U_{ind}(t) \sim log(dB(t)/dt)$

 $U_{ind}(t) \sim dB(t)/dt$

PHYWE

۱

PHYWE

Task 2				PHYWE
Drag the words into the	correct boyes			
The	of a magnet within a	coil affects the		movement
When the magnet moves	e e		ange in the magnetic	faster
field produces a	. If it mo		, the rate of	no voltage
change of magnetic flux in magnet remains stationar	0 0		. However, if the	slowly
is induced. The		-	the magnet is moved or	higher voltage
its direction is reversed, al	lowing a voltage to be	e measured.		low voltage magnetic flux
				induced voltage

Task 3	PHYWE
Fill in the gaps.	
Electromagnetic induction describes the generation of an when the changes. When a magnet moves into or out of the coil, the magnetic flux changes. The the movement, the greater the induced voltage. However, if	0
remains, the magnetic field stays and no voltage is generated. Th follows the principle that the induced voltage is to the rate of change of the m	
Check	

P6301269

Score / Total		Slide
0/2	magnetic flux dens	Slide 19: Relationship between rate of change of r
0/8		Slide 20: Movement of the magnet
0/8		Slide 21: Summary of electromagnetic induction
0/18	Total amount	

