

Осмотическое давление раствора

Учащиеся изучают электрохимические термины, особенно термин "давление раствора". С помощью давления раствора необходимо углубить понимание напряжения.

Химия	Физическая химия	Электрохимия	Набор по электрохимии
Г Уровень сложности	РО Кол-во учеников	Б Время подготовки	Б Время выполнения
лёгкий	2	10 Минут	10 Минут

This content can also be found online at:

http://localhost:1337/c/614c61bea2e9a4000387549c

Tel.: 0551 604 - 0

Fax: 0551 604 - 107

PHYWE

Информация для учителей

Описание PHYWE

Если погрузить два разных металла, например, медь и цинк, в подходящую жидкость, то можно также обнаружить электрическое напряжение между этими металлами. Это основано на различном давлении раствора различных металлов.

Давление раствора - это усилие металлов образовать ионы в водном растворе и таким образом выполнить конфигурацию инертного газа. Например, если металл находится в воде, под действием давления раствора ионы металла переходят в раствор, и металл становится отрицательно заряженным.

В принципе, чем менее благороден металл, тем больше его давление на раствор. Это объясняет, в частности, различную реакционную способность благородных и неблагородных металлов с ионами металлов.

Дополнительная информация для учителей (1/4)

PHYWE

Предварительные

знания

Принцип

Студенты должны уже иметь дело с давлением раствора в теории. Они также должны иметь базовое представление об электрическом напряжении.

Металлы цинк и медь имеют определенную тенденцию растворяться в воде, высвобождая при этом электроны. Эта тенденция может быть описана как "давление раствора". Во время растворения атомы металла с поверхности металлических листов переходят в ионное состояние.

Дополнительная информация для учителей (2/4)

Цель

Студенты должны освоить больше электрохимических терминов, особенно термин "давление раствора". Давление раствора будет использоваться для углубления понимания напряжения (и того, как оно создается).

Задачи

Студенты должны определить электрическое напряжение в дистиллированной воде между медным и цинковым листом.

Дополнительная информация для учителей (3/4)

PHYWE

Дополнительная информация (1/2)

Образовавшиеся ионы диффундируют в воду, а электроны остаются на пластинах и заряжают их отрицательно. Каждый металл имеет характерное давление раствора; эмпирическое правило здесь таково: чем благороднее металл, тем меньше ионов переходит в раствор и тем ниже давление раствора. Появление электрического напряжения между двумя электродами указывает на то, что менее благородный металл, в данном случае цинк, имеет большую склонность к растворению, чем более благородная медь. Следовательно, больше ионов цинка растворяется и больше электронов накапливается на цинковом листе.

Только после этого возникает электрическое напряжение, причем цинк представляет собой отрицательный полюс, а медь - положительный. По условиям эксперимента поток электронов не может происходить из-за высокого внутреннего сопротивления измерительного прибора, поэтому электроны остаются на электродах. Чем больше электронная плотность на пластинах, тем больше она противодействует переходу атомов металла в ионное состояние, после чего процесс растворения окончательно останавливается и достигается равновесие.

Дополнительная информация для учителей (4/4)

PHYWE

Дополнительная информация (2/2)

Поскольку отрицательно заряженные электродные листы оказывают притягательную силу на положительно заряженные ионы металла, они не могут беспрепятственно диффундировать в воду. Вместо этого эти ионы собираются вокруг электродов и образуют там положительно заряженный ионный слой, который называется слоем Гельмгольца. Если позволить электронам цинкового электрода перетекать на медный электрод, например, через проволочное соединение без значительного сопротивления, то цинк постепенно полностью растворится (более подробно эти процессы описаны в экспериментах по коррозии).

Во время растворения атомы металла с поверхности металлических листов переходят в ионное состояние:

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

 $Cu \rightarrow Cu^{2^+} + 2e^-$

Указания по технике безопасности

PHYWE

- Во время эксперимента все находящиеся в комнате люди должны носить защитные очки!
- К этому эксперименту применимы общие правила по технике безопасности на уроках естествознания.
- Раствор сульфата меди (1 моль/л):Добавьте 15,9 г сульфата меди в 250 мл дистиллированной воды. Хорошо перемешайте и доведите до 500 мл дистиллированной водой. Этот эксперимент служит качественным доказательством, поэтому точная концентрация не имеет значения для эксперимента (=> доказательство осаждения меди на некоторые неблагородные металлы).

Информация для учеников

Мотивация

Если погрузить два разных металла, например, медь и цинк, в подходящую жидкость, то можно также обнаружить электрическое напряжение между этими металлами.

Давление раствора - это усилие металлов образовать ионы в водном растворе и таким образом выполнить конфигурацию инертного газа.

Если теперь поместить различные металлы (например, железо или цинк) в раствор соли металла, то можно наблюдать различное реакционное поведение неблагородных и благородных металлов. Если металл менее благороден, чем ионы металла (из раствора), элементарный металл (из раствора) осаждается на менее благородном металле.

Задачи РНУМЕ

Если вы окунете два электрода из разных металлов, например, меди и цинка, в чистую дистиллированную воду, вы также сможете обнаружить электрическое напряжение между этими металлами.

Проведите такой эксперимент и ответьте на вопросы в разделе протокола.

Исследуйте удерживание различных металлов в растворе соли металла и ответьте на вопросы в протоколе.

Материал

Позиция	Материал	Пункт No.	Количество
1	Сульфат меди (II), крист., 250 г	30126-25	1
2	Цифровой мультиметр, 3 1/2 разрядный дисплей с NiCr-Ni термопарой	07122-00	1
3	Соединительный проводник, 2 мм-штепсель, 500 мм, красный	07356-01	1
4	Соединительный проводник, 2 мм-штепсель, 500 мм, синий	07356-04	1
5	Переходной штекер, гнездо 4 мм/ 2 мм, 2 шт.	11620-27	1
6	Зажим типа "Крокодил", с изоляцией, 2 мм, 2 шт.	07275-00	1
7	Набор электродов (Al, Fe, Pb, Zn, Cu)	07856-00	2
8	Мензурка, высокая, 50 мл	46025-00	1
9	Блок с 8 углублениями, d=40 мм	37682-00	1

Подготовка

Возьмите блок измерительных ячеек и по одному цинковому и медному листу. Поставьте эксперимент, как показано на рисунке слева.

Заполните одну измерительную ячейку блока чистой дистиллированной водой.

Подключите цинковый электрод (цинковый лист размером 15 мм х 40 мм) к гнезду заземления и медный электрод (размером 15 мм х 40 мм) к гнезду напряжения мультиметра.

Выполнение работы (1/2)

PHYWE

Установите измерительный прибор на диапазон измерения 2 В постоянного тока и затем вставьте оба электрода в дистиллированную воду, как показано на иллюстрации экспериментальной установки на слайде "Мотивация".

Электроды не должны прикасайтесь друг к другу!

Не прикасайтесь к электродам непосредственно пальцами во время измерения, так как контакт с кожей человека может привести к ошибкам измерения. Поэтому электроды удерживаются только с помощью изолированных зажимов типа "крокодил".

Выполнение работы (2/2)

PHYWE

Теперь возьмите блок измерительных ячеек и раствор сульфата меди. Заполните один блок ячеек наполовину раствором сульфата меди.

Поместите серебряный электрод в одну ячйку, а медный, цинковый или железный электрод - в другую.

Электроды не должны прикасайтесь друг к другу!

Наблюдайте за двумя электродами и определите, на каком электроде осаждается медь.

Протокол

Задание 1	
Что такое давление раствора?	
О Склонность металлов цинка и меди растворяться в воде, высвобождая при этом электроны.	
О Ни один из ответов не является правильным.	
О Давление раствора - это давление, которое испытывает человек, когда необходимо найти решение особенно сложной проблемы.	
О Давление, возникающее при погружении металлов цинка и меди в герметичный контейнер с водой.	
✓ Проверьте	

Задание 2
Какой металл имеет более высокое давление раствора и что это значит?
Чем "менее благороден" металл, тем меньше ионов переходит в раствор и тем ниже давление раствора.
В этом эксперименте цинк является "менее благородным" металлом. металл и поэтому имеет более высокое давление раствора.
□ Чем более "благородным" является металл, тем меньше ионов переходит в раствор и тем ниже давление раствора.
В этом эксперименте цинк является "благородным\" металлом. металл и, соответственно, имеет более высокое давление раствора.

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Задание 3	PHYWE
Как с помощью простого эксперимента можно выяснить, какой из двух металлов более	e

О Вы можете увидеть, какой из двух металлов более окислен после некоторого времени пребывания в воде и должен быть вытерт наждачной бумагой. Здесь скапливается больше ионов, поэтому это более "благородный" металл.

О Вы можете увидеть, какой из двух металлов более окислен после некоторого времени пребывания в воде и должен быть вытерт наждачной бумагой. Здесь скапливается больше ионов, поэтому это "менее благородный" металл.

О Это невозможно доказать с помощью простого эксперимента.

О Проворито

благородный?

Задание 4 PHYWE

Что можно сказать о реакционном поведении металлов в растворе сульфата меди?
□ Элементарная медь осаждается в растворе медной соли на все металлы, которые менее благородны, чем медь.
□ Серебро более благородно, чем медь, поэтому элементарная медь не осаждается на металлическом серебре в растворе медной соли.
 Железо или цинк являются более благородными металлами, чем медь. Поэтому они реагируют с раствором соли меди, образуя элементарную медь.
Опроверьте

11/12

Слайд	Оценка/Всего
Слайд 16: Давление раствора	0/1
Слайд 17: Повышенное давление раствора	0/2
Слайд 18: Попытка благородная или неблагородная	0/1
Слайд 19: Реакционное поведение благородных металлов	0/2
Всего	0/6
РешенияПовторите	

