
P9505100

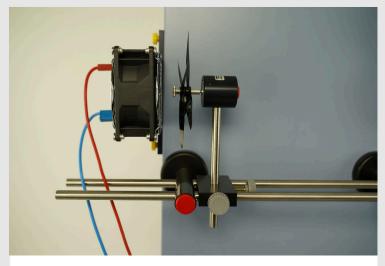
curricuLAB[®] PHYWE

Electrical Energy from Wind Power - Influence of Wind Speed, Wind Direction and Load with ADM3

Electrical energy from wind power - influence of wind speed and load

Physics	Energy	Renewable ene	rgies: Wind				
Difficulty level	RR Group size	C Preparation time	Execution time				
hard	-	10 minutes	20 minutes				
This content can also be found online at:							

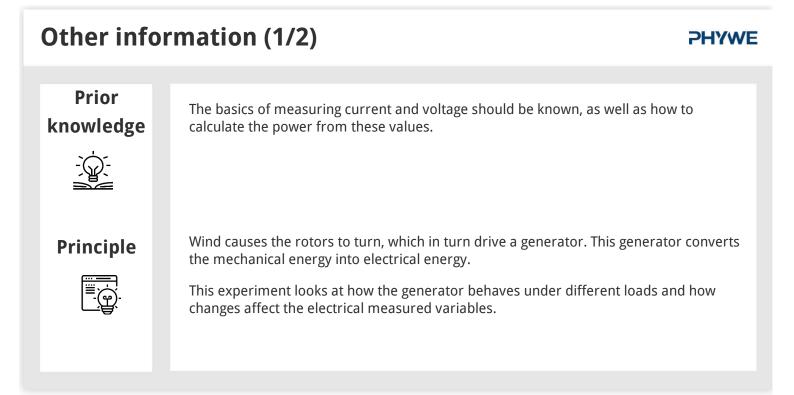
http://localhost:1337/c/64ac143dec34c90002f3ef31



General information

Application

PHYWE


Experimental setup - wind turbine

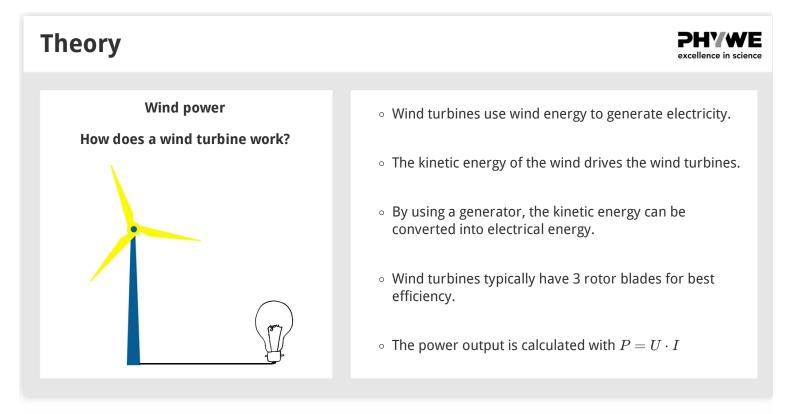
Electrical energy from wind power -Influence of windspeed and load

Wind turbines convert the kinetic energy contained in the flow of the wind into electrical energy. Wind turbines are automatically guided by the direction of the wind in order to optimise their performance.

In this experiment, the electrical energy generated causes a filament lamp integrated in the circuit to light up. The dependence of the power emitted on the wind speed and the load can be observed.

Other information (2/2)

PHYWE


Note -文	The pupils recognise the relationship between wind speed and power output using a model of a wind turbine.
Task	The blower may be operated with a maximum voltage of 12 V, otherwise the motor could be destroyed.
	Pre-shift when handling the generator. Avoid reaching into the rotating rotor blades.

Safety instructions

PHYWE

The general instructions for safe experimentation in science lessons apply to this experiment.

For H and P phrases, please refer to the safety data sheet of the respective chemical.

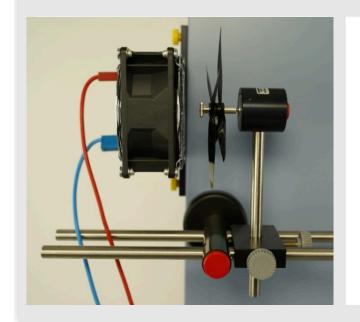
Equipment

Position	Material	Item No.	Quantity
1	PHYWE Demo Physics board with stand	02150-00	1
2	PHYWE Demo Multimeter ADM 3: current, voltage, resistance, temperature	13840-00	2
3	PHYWE Power supply, universal, analog display DC: 18 V, 5 A / AC: 15 V, 5 A	13503-93	1
4	Junction, module DB	09401-10	2
5	Socket for incandescent lamp E10 ,module DB	09404-00	1
6	Switch on/off, module DB	09402-01	1
7	Blower, 12V	05750-00	1
8	Generator with metrical thread axis and nut	05751-01	1
9	Rotor, 2 pieces	05752-01	1
10	Clamping holder with 2 clamping possibilit, 0-13 mm,fixing magnet	02151-08	2
11	Sliding mount for optical bench	02151-09	1
12	Support rod, stainless steel, 500 mm	02032-00	2
13	Clamp on holder	02164-00	1
14	Filament lamps 1.5V/0.15A,E10,10 pieces	06150-03	1
15	Filament lamps 4V/0.04A, E10, 10	06154-03	1
16	Filament lamps 3.5V/0.2A,E10, 10	06152-03	1
17	Connecting cord, 32 A, 250 mm, yellow	07360-02	1
18	Connecting cord, 32 A, 500 mm, blue	07361-04	1
19	Connecting cord, 32 A, 750 mm, red	07362-01	2
20	Connecting cord, 32 A, 750 mm, blue	07362-04	2
21	G-clamp	02014-01	2

Setup and procedure

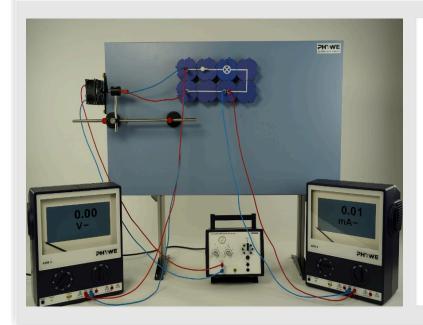
Setup (1/3)

- On the left side of the board attach the fan with the clamping holder (see illustration).
- Blower the fan so that it creates a horizontal wind jet along the board.
- Set up a tripod bench for the windmill. Slide the glider onto the two support rods and guide the support rods through the two holes in the clamps.


PHYWE

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

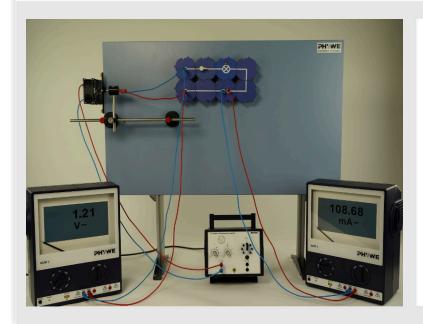
Setup (2/3)



PHYWE

- Place the stand bench against the board and alignit horizontally.
- Attach the 6 rotor blades to the wind generator. For a good result, point the dull side of the rotor blades away from the wind.
- Place the wind generator in the hole of the slinding.
- The distance between the wind generator and the fan should be approx. 5 cm.

Setup (3/3)


If necessary, correct the distance of the blower to the board and adjust the height of the generator by moving it in the sliding.

- Set up the lamp circuit according to the illustration with the 1.5 V filament lamps. The switch is closed.
- Connect the Blower to the DC output of the power supply unit.
- $\circ\;$ The power supply unit is switched off.

PHYWE

Procedure (1/2)

PHYWE

1st part of the experiment: change the windspeed

- Set the voltage on the power supply unit to 0 V.
- Switch on the power supply unit.
- Very slow increase the voltage at the power supply unit to 12 V.
- Observing the brightness of the filament lamps.

Procedure (2/2)

PHYWE

Test part 2. change of load

• Note the current and voltage for each measurement. Calculate the power. Enter the values in the chart on the next slide.

1.5 V filament lamps

- $\circ~$ Wait for about 15 seconds.
- Open the switch in the circuit, listening for the sound of the wind generator.

3.5 V filament lamps

- Replace the 1.5 V filament lamps with the 3.5 V filament lamps.
- Close the switch. Wait 15 seconds and open the switch again.

4 V filament lamps

- Replace the 3.5 V filament lamps with the 4 V filament lamps.
- Wait 15 seconds. Switch off the mains unit.

PHYWE excellence in science

PHYWE excellence in science

Evaluation (1/2)

Determined values:

Lamps	1.5V	3.5V	4V
Current			
Ι			
Voltage			
U			
Power			
Р			

Observation

When the wind speed increases, the power of the wind generator increases and the filament lamos shine brighter, but do not reach their full brightness.

If the circuit is interrupted, the power goes down to zero, the speed of the wind generator increases and it can be clearly heard that it becomes louder.

\If the wind turbine is not blown from the front but from the side, the power output decreases significantly at larger angles.

Evaluation (2/2)

From the specified data of the incandescent lamps for voltage and current, their rated wattages can be calculated (see chart), at which the incandescent lamps would shine brightly.

	U	Ι	$P = U \cdot I$	$R = \frac{U}{I}$
1,5-V-Glühlampe	1,5 V	0,15 A	0,225 W	10 Ω
3,5-V-Glühlampe	3,5 V	0,2 A	0,7 W	17,5 Ω
4-V-Glühlampe	4 V	0,04 A	0,16 W	100 Ω

Drag the words into the correct boxes! Comparing nominal and measured power values shows that the with the filament lamps connected cannot deliver enough and therefore they do not shine brightly. The different lamps have different . With the load, the and thus the volume of the wind turbine changes. wind generator speed power resistances Check

PHYWE

www.phywe.de

P9505100

lide				Score / Total
Slide 15: Observations at the wind turbine				0/4
			Total score	0/4
	Show solutions	C Repeat	Export text	